Diabate Dohouonan,
Coulibaly Tenon, N’guessan Ehikpa Naomie Melin , and Tano Yao, from the
different institute of Côte d’Ivoire. wrote a Reseach Article about, Insect
Diversity in Okra Cultivation in Man, Côte d’Ivoire. Entitled, Diversity and
abundance of insects found on okra Abelmonchus esculentus cultivation in Man,
Côte d’Ivoire. This research paper published by the International Journal of
Biosciences (IJB). an open access scholarly research journal on Biosciences.
under the affiliation of the International Network For Natural Sciences|
INNSpub. an open access multidisciplinary research journal publisher.
Abstract
Abelmonchus esculentus is
an important source of vitamins and minerals. However, okra plants were damaged
by insect pests. This study carried out to evaluate the diversity of insects on
okra plants in Man locality, for better pest management. Insects were recorded
from 21th to 70th Day After Sowing, on Clemson spineless okra
sown on March 2nd, 2024. A total of 12 species belonging to 6 orders
(Hymenoptera, Hemiptera, Orthoptera, Diptera, Lepidoptera, Coleoptera) were
collected. The relative abundances of insect pests, predators, parasitoids and
pollinators were 55.13%, 17.95%, 7.26% and 19.66% respectively during the
vegetative phase, and 69.34%, 17.33%, 5.78% and 7.55% during the reproductive
phase, respectively. The Hemiptera Amrasca biguttula, Podagrica
decolorata, Dysdercus voelkeri, Bemisia tabaci, Lepidoptera Plutella
xylostella and, Orthopterans Oecanthus fultonis, Locusta
migratoria and Criotettix bispinosus are pests. Sarcophaga sp
(Diptera) is a parasitoid and Brachymyrmex patagonicus (Hymenoptera)
is a pollinators. The Coleoptera Coccinella septempunctata, Coccinella
cheilomenes and Alticini sp are predators. During the vegetative
stage, B. patagonicus (42.09%) and A. biguttula (29.93%)
were the most abundant. During the reproductive stage, the highest number
of A. biguttula (47.6%), P. decolorata (15.13%), D.
voelkeri (13.57%) and B. patagonicus (11.59%) were recorded.
Shannon and Margalef indices were higher during the reproductive stage (1.645,
1.602) than those of the vegetative stage (1.589, 1.477). The equitability
indices are similar (0.66) for both phases. Knowledge of okra entomofauna will
help for integrated pest management.
Read more : Gongronema latifolium Extract Mitigates Acetaminophen-Induced Liver Damage in Rats | InformativeBD
Introduction
Okra Abelmonchus esculentus accounts for around 1.5% of total vegetable production worldwide (Sathish et al., 2013). It is rich in protein, vitamins and minerals (Krishna et al., 2022). In West Africa, this crop ranks second after tomatoes (Birlouez, 2020). In Côte d'Ivoire, A. esculentus production is estimated at 185,800 tonnes per year (Soro et al., 2016).
This crop supplements the population's
nutritional needs, which consist exclusively of carbohydrates (Diabaté, 2016).
The fruit is rich in calcium, iron, carbohydrates, proteins and vitamins
(Khomsug et al., 2010). It is widely consumed in Côte d'Ivoire, particularly in
the Tonkpi region. In the Tonkpi region, all parts of the okra except the roots
are consumed. It is therefore of vital importance to the people of this region.
Okra is also used in traditional medicine and industry (Marius et al., 1997).
However, okra is attacked by a large number of insect pests, which limit its
production. On the other hand, this crop is home to auxiliary insects that help
pollinate the plant and limit the outbreak of insect pests. Insect pests
consume okra leaves and leave holes in them, resulting in reduced
photosynthesis and lower yields (Soro et al., 2016; Diabaté et al., 2024).
These insects also attack okra fruits, reducing their market value and
negatively influencing food security (AsareBediako et al., 2014 ; Birlouez, 2020
; Zhussip et al., 2024). Biting-sucking insects, in particular Amrasca
biguttula, Bemisia tabaci and Aphis gossypii, are major pests of okra and are
responsible for over 17% of yield loss (Mandal et al., 2006; Sarkar et al.,
2015). To increase okra yields, farmers use pesticides whose doses and
application times are not respected. This has led to the emergence of insect
resistance to a wide range of insecticides (Srinivas et al., 2004; Diabaté,
2016; Bade and Bhamare, 2023). Pest management requires a good knowledge of the
organisms for targeted control. The general objective of this study was to
assess the diversity of insects infested with the okra crop established in the
locality of Man, for better pest management. The aim is to determine the
insects that are present on okra during the vegetative and reproductive phases.
Reference
Akpesse AAM, Diabaté
D, Coulibaly T, Kouadja YO, Koua KH, Kouassi KP. 2022.
Termitic diversity of the Dalhia Fleurs partial natural reserve (Bingerville,
Côte d’Ivoire). Journal of Agricultural and Ecology Research
International 23(6), 82–92. DOI: 10.9734/JAERI/2022/v23i6501.
Bade AS, Bhamare
VK. 2023. Insecticidal resistance in Helicoverpa armigera (Hübner)
infesting chickpea. Indian Journal of Entomology, 1–4. DOI:
10.55446/IJE.2023.1348.
Birlouez E. 2020.
Petite et grande histoire des légumes. Editions Quæ, Paris (France), 170p.
Boateng F, Amiteye
S, Appiah AS, Marri D, Offei BK, Ofori SEK, Amoatey H.
2019. Insect pest diversity and damage assessment in field grown okra (Abelmoschus
esculentus (L.) Moench) in the coastal savannah agro-ecological zone of
Ghana. Journal of Agriculture and Ecology Research International 18(4),
1–10.
Challa M, Sharma
AK, Saxena AK, Mishra YK, Rathore J. 2020. Population dynamics
of major insects of okra in relation to weather parameters in Jabalpur District
of Madhya Pradesh. International Journal of Current Microbiology and Applied
Sciences 11, 2082–2088.
Dajoz R. 2006. Précis
d’écologie, 8è Edition, Ed. Dunod, Paris, France, 631p.
Delvare G, Aberleng
P. 1989. Les Insectes d’Afrique et d’Amérique Tropicale. Clé pour la
reconnaissance des familles. Laboratoire de faunistique, Département GERDAT:
Montpellier, France, 194p.
Diabaté D, N’Guessan
ENM, Coulibaly T, Tano Y. 2024. Diversity of Coleoptera on cucumber
in the Tonkpi region of Man, Côte d’Ivoire. Indian Journal of Entomology 86(2),
351–355. DOI: 10.55446/IJE.2024.1692.
Diabaté D. 2016. Impact
et mode d’action de quelques biopesticides et insecticides classiques en
culture maraîchère dans la région du Moronou (Bongouanou, Côte d’Ivoire). Thèse
unique de Doctorat, Université Félix Houphouët-Boigny, Côte d’Ivoire, 148p.
Khomsug P, Thongjaroenbuangam
W, Pakdeenarong N, Suttajit M, Chantiratikul P. 2010.
Antioxidative activities and phenolic content of extracts from okra (Abelmoschus
esculentus L.). Research Journal of Biological Sciences 5, 310–313.
Krishna B, Kumar R, Choudhary
JS, Kumar R, Hans H. 2022. Insect pests in okra agro-ecosystem and
their integrated management. Indian Horticulture, 30–34.
Mandal SK, Sah SB, Gupta
SC. 2006. Efficacy and economics of biopesticide and insecticide combinations
against okra pests. International Journal of Agricultural Science 2(2),
377–380.
Marius C, Gerard V, Antoine
G. 1997. Le gombo, Abelmoschus esculentus (L.) Moench une source
possible de phospholipides. Agronomie et Biotechnologies, Oléagineux, Corps
Gras, Lipides 4(5), 389–392.
Ojiako FO, Ibe AE, Ogu
EC, Okonkwo CC. 2018. Effect of varieties and mulch on foliar insect pests
of okra (Abelmoschus esculentus L. (Moench)) in a humid tropical
environment. Agrosearch 18(2), 38–58.
https://dx.doi.org/10.4314/agrosh.v18i2.4.
Roth M. 1974.
Initiation à la morphologie, la systématique et la biologie des insectes.
Editions de l’office de la recherche scientifique outre-mer, Paris, France,
212p.
Sarkar S, Patra S, Samanta
A. 2015. Evaluation of bio-pesticides against red cotton bug and fruit borer of
okra. The Bioscan 10(2), 601–604.
Sathish KD, Eswar
TD, Praveen KA, Ashok KK, Bramha SRD, Ramarao N. 2013. A
review on Abelmoschus esculentus (Okra). International Research
Journal of Pharmaceutical and Applied Sciences 3(4), 129–132.
Soro S, Yéboué NL, Tra
BCS, Zadou DA, Koné I. 2016. Dynamics of the flea beetle Podagrica
decolorata Duvivier, 1892 (Insecta: Chrysomelidae) on okra crops:
Implications for conservation of the Tanoe-Ehy Swamp Forests (Southeastern
Ivory Coast). Journal of Animal & Plant Sciences 30, 4758–4766.
Srinivas R, Udikeri
SS, Jayalakshmi SK, Sreeramulu K. 2004. Identification of factors
responsible for insecticide resistance in Helicoverpa armigera.
Comparative Biochemistry and Physiology Part C: Toxicology and
Pharmacology 137, 261–269.
Tiessé BAC. 2020.
Apport de la télédétection et des SIG pour le suivi spatio-temporel de l’occupation
du sol et la cartographie de la sensibilité à l’érosion hydrique dans la région
montagneuse du Tonkpi (Ouest de la Côte d’Ivoire). Thèse Unique de Doctorat,
Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte
d’Ivoire, 171p.
Ugwoke KI, Onyishi
LE. 2009. Effects of Mycorrhizae (Glomus musae), poultry manure, and okra
mosaic potyvirus (OKMV) on yield of okra (Abelmoschus esculentus). Production
Agriculture and Technology 5, 359–369.
Zhussip M, Akhmetov
K, Burkitbaeva U, Amanova G, Mazhenova L. 2024. Contribution to
the diversity of leaf miners of silver birch, Betula pendula Roth in
North-Eastern Kazakhstan. Journal of Insect Biodiversity and Systematics 10(3),
589–604. https://doi.org/10.61186/jibs.10.3.589.
0 comments:
Post a Comment