Insect Diversity in Okra Cultivation in Man, Côte d’Ivoire | InformativeBD

Diversity and abundance of insects found on okra Abelmonchus esculentus cultivation in Man, Côte d’Ivoire

Diabate Dohouonan, Coulibaly Tenon, N’guessan Ehikpa Naomie Melin , and Tano Yao, from the different institute of Côte d’Ivoire. wrote a Reseach Article about, Insect Diversity in Okra Cultivation in Man, Côte d’Ivoire. Entitled, Diversity and abundance of insects found on okra Abelmonchus esculentus cultivation in Man, Côte d’Ivoire. This research paper published by the International Journal of Biosciences (IJB). an open access scholarly research journal on Biosciences. under the affiliation of the International Network For Natural Sciences| INNSpub. an open access multidisciplinary research journal publisher.

Abstract

Abelmonchus esculentus is an important source of vitamins and minerals. However, okra plants were damaged by insect pests. This study carried out to evaluate the diversity of insects on okra plants in Man locality, for better pest management. Insects were recorded from 21th to 70th Day After Sowing, on Clemson spineless okra sown on March 2nd, 2024. A total of 12 species belonging to 6 orders (Hymenoptera, Hemiptera, Orthoptera, Diptera, Lepidoptera, Coleoptera) were collected. The relative abundances of insect pests, predators, parasitoids and pollinators were 55.13%, 17.95%, 7.26% and 19.66% respectively during the vegetative phase, and 69.34%, 17.33%, 5.78% and 7.55% during the reproductive phase, respectively. The Hemiptera Amrasca biguttula, Podagrica decolorata, Dysdercus voelkeri, Bemisia tabaci, Lepidoptera Plutella xylostella and, Orthopterans Oecanthus fultonis, Locusta migratoria and Criotettix bispinosus are pests. Sarcophaga sp (Diptera) is a parasitoid and Brachymyrmex patagonicus (Hymenoptera) is a pollinators. The Coleoptera Coccinella septempunctata, Coccinella cheilomenes and Alticini sp are predators. During the vegetative stage, B. patagonicus (42.09%) and A. biguttula (29.93%) were the most abundant. During the reproductive stage, the highest number of A. biguttula (47.6%), P. decolorata (15.13%), D. voelkeri (13.57%) and B. patagonicus (11.59%) were recorded. Shannon and Margalef indices were higher during the reproductive stage (1.645, 1.602) than those of the vegetative stage (1.589, 1.477). The equitability indices are similar (0.66) for both phases. Knowledge of okra entomofauna will help for integrated pest management.

Submit your article to IJB Journal

Read moreGongronema latifolium Extract Mitigates Acetaminophen-Induced Liver Damage in Rats | InformativeBD

Introduction

Okra Abelmonchus esculentus accounts for around 1.5% of total vegetable production worldwide (Sathish et al., 2013). It is rich in protein, vitamins and minerals (Krishna et al., 2022). In West Africa, this crop ranks second after tomatoes (Birlouez, 2020). In Côte d'Ivoire, A. esculentus production is estimated at 185,800 tonnes per year (Soro et al., 2016).

This crop supplements the population's nutritional needs, which consist exclusively of carbohydrates (Diabaté, 2016). The fruit is rich in calcium, iron, carbohydrates, proteins and vitamins (Khomsug et al., 2010). It is widely consumed in Côte d'Ivoire, particularly in the Tonkpi region. In the Tonkpi region, all parts of the okra except the roots are consumed. It is therefore of vital importance to the people of this region. Okra is also used in traditional medicine and industry (Marius et al., 1997). However, okra is attacked by a large number of insect pests, which limit its production. On the other hand, this crop is home to auxiliary insects that help pollinate the plant and limit the outbreak of insect pests. Insect pests consume okra leaves and leave holes in them, resulting in reduced photosynthesis and lower yields (Soro et al., 2016; Diabaté et al., 2024). These insects also attack okra fruits, reducing their market value and negatively influencing food security (AsareBediako et al., 2014 ; Birlouez, 2020 ; Zhussip et al., 2024). Biting-sucking insects, in particular Amrasca biguttula, Bemisia tabaci and Aphis gossypii, are major pests of okra and are responsible for over 17% of yield loss (Mandal et al., 2006; Sarkar et al., 2015). To increase okra yields, farmers use pesticides whose doses and application times are not respected. This has led to the emergence of insect resistance to a wide range of insecticides (Srinivas et al., 2004; Diabaté, 2016; Bade and Bhamare, 2023). Pest management requires a good knowledge of the organisms for targeted control. The general objective of this study was to assess the diversity of insects infested with the okra crop established in the locality of Man, for better pest management. The aim is to determine the insects that are present on okra during the vegetative and reproductive phases.

Reference

Akpesse AAM, Diabaté D, Coulibaly T, Kouadja YO, Koua KH, Kouassi KP. 2022. Termitic diversity of the Dalhia Fleurs partial natural reserve (Bingerville, Côte d’Ivoire). Journal of Agricultural and Ecology Research International 23(6), 82–92. DOI: 10.9734/JAERI/2022/v23i6501.

Bade AS, Bhamare VK. 2023. Insecticidal resistance in Helicoverpa armigera (Hübner) infesting chickpea. Indian Journal of Entomology, 1–4. DOI: 10.55446/IJE.2023.1348.

Birlouez E. 2020. Petite et grande histoire des légumes. Editions Quæ, Paris (France), 170p.

Boateng F, Amiteye S, Appiah AS, Marri D, Offei BK, Ofori SEK, Amoatey H. 2019. Insect pest diversity and damage assessment in field grown okra (Abelmoschus esculentus (L.) Moench) in the coastal savannah agro-ecological zone of Ghana. Journal of Agriculture and Ecology Research International 18(4), 1–10.

Challa M, Sharma AK, Saxena AK, Mishra YK, Rathore J. 2020. Population dynamics of major insects of okra in relation to weather parameters in Jabalpur District of Madhya Pradesh. International Journal of Current Microbiology and Applied Sciences 11, 2082–2088.

Dajoz R. 2006. Précis d’écologie, 8è Edition, Ed. Dunod, Paris, France, 631p.

Delvare G, Aberleng P. 1989. Les Insectes d’Afrique et d’Amérique Tropicale. Clé pour la reconnaissance des familles. Laboratoire de faunistique, Département GERDAT: Montpellier, France, 194p.

Diabaté D, N’Guessan ENM, Coulibaly T, Tano Y. 2024. Diversity of Coleoptera on cucumber in the Tonkpi region of Man, Côte d’Ivoire. Indian Journal of Entomology 86(2), 351–355. DOI: 10.55446/IJE.2024.1692.

Diabaté D. 2016. Impact et mode d’action de quelques biopesticides et insecticides classiques en culture maraîchère dans la région du Moronou (Bongouanou, Côte d’Ivoire). Thèse unique de Doctorat, Université Félix Houphouët-Boigny, Côte d’Ivoire, 148p.

Khomsug P, Thongjaroenbuangam W, Pakdeenarong N, Suttajit M, Chantiratikul P. 2010. Antioxidative activities and phenolic content of extracts from okra (Abelmoschus esculentus L.). Research Journal of Biological Sciences 5, 310–313.

Krishna B, Kumar R, Choudhary JS, Kumar R, Hans H. 2022. Insect pests in okra agro-ecosystem and their integrated management. Indian Horticulture, 30–34.

Mandal SK, Sah SB, Gupta SC. 2006. Efficacy and economics of biopesticide and insecticide combinations against okra pests. International Journal of Agricultural Science 2(2), 377–380.

Marius C, Gerard V, Antoine G. 1997. Le gombo, Abelmoschus esculentus (L.) Moench une source possible de phospholipides. Agronomie et Biotechnologies, Oléagineux, Corps Gras, Lipides 4(5), 389–392.

Ojiako FO, Ibe AE, Ogu EC, Okonkwo CC. 2018. Effect of varieties and mulch on foliar insect pests of okra (Abelmoschus esculentus L. (Moench)) in a humid tropical environment. Agrosearch 18(2), 38–58. https://dx.doi.org/10.4314/agrosh.v18i2.4.

Roth M. 1974. Initiation à la morphologie, la systématique et la biologie des insectes. Editions de l’office de la recherche scientifique outre-mer, Paris, France, 212p.

Sarkar S, Patra S, Samanta A. 2015. Evaluation of bio-pesticides against red cotton bug and fruit borer of okra. The Bioscan 10(2), 601–604.

Sathish KD, Eswar TD, Praveen KA, Ashok KK, Bramha SRD, Ramarao N. 2013. A review on Abelmoschus esculentus (Okra). International Research Journal of Pharmaceutical and Applied Sciences 3(4), 129–132.

Soro S, Yéboué NL, Tra BCS, Zadou DA, Koné I. 2016. Dynamics of the flea beetle Podagrica decolorata Duvivier, 1892 (Insecta: Chrysomelidae) on okra crops: Implications for conservation of the Tanoe-Ehy Swamp Forests (Southeastern Ivory Coast). Journal of Animal & Plant Sciences 30, 4758–4766.

Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K. 2004. Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 137, 261–269.

Tiessé BAC. 2020. Apport de la télédétection et des SIG pour le suivi spatio-temporel de l’occupation du sol et la cartographie de la sensibilité à l’érosion hydrique dans la région montagneuse du Tonkpi (Ouest de la Côte d’Ivoire). Thèse Unique de Doctorat, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire, 171p.

Ugwoke KI, Onyishi LE. 2009. Effects of Mycorrhizae (Glomus musae), poultry manure, and okra mosaic potyvirus (OKMV) on yield of okra (Abelmoschus esculentus). Production Agriculture and Technology 5, 359–369.

Zhussip M, Akhmetov K, Burkitbaeva U, Amanova G, Mazhenova L. 2024. Contribution to the diversity of leaf miners of silver birch, Betula pendula Roth in North-Eastern Kazakhstan. Journal of Insect Biodiversity and Systematics 10(3), 589–604. https://doi.org/10.61186/jibs.10.3.589.

Source Diversity and abundance of insects found on okra Abelmonchus esculentus cultivation in Man, Côted’Ivoire  

0 comments: