Showing posts with label Survival. Show all posts
Showing posts with label Survival. Show all posts

Growth Dynamics of Achatina fulica in a Controlled Breeding Environment | InformativeBD

Influence of temperature on survival, yolk utilization, growth, and morphometric anomaly rates in post-embryonic Clarias jaensis under controlled conditions

Boddis Zebaze Tsiguia,  Guegang Tekou, Fon Dorothy Engwali,  Mmira A Akohogni, Alexia Kévine Noubissi Chiassa,  Algrient Nana Towa, and Claudine Tekounegning Tiogué, from the institute of Cameroon. wrote a Research Article about, Growth Dynamics of Achatina fulica in a Controlled Breeding Environment . Entitled, Influence of temperature on survival, yolk utilization, growth, and morphometric anomaly rates in post-embryonic Clarias jaensis under controlled conditions. This research paper published by the International Journal of Agronomy and Agricultural Research (IJAAR). an open access scholarly research journal on Agronomy. under the affiliation of the International Network For Natural Sciences| INNSpub. an open access multidisciplinary research journal publisher.

Abstract  

Captive breeding of Clarias jaensis remains limited due to a lack of knowledge regarding optimal temperature conditions to ensure larval survival and early development. This study evaluated the impact of different temperatures on survival, yolk absorption, linear growth, and the rate of morphometric anomalies in post-embryos. A total of 580 newly hatched post-embryos were evenly distributed in 10 trays, placed in pairs in five polyester tanks. Each tank was subjected to one of the five experimental temperatures: 22°C, 25°C, 27°C, 29°C, and 31°C. Survival and anomaly rates were analyzed using the Kaplan-Meier test, while the evolution of yolk sac volume and larval length was studied using a one-factor ANOVA. The results show that the best survival rates were obtained at 25°C (96.5 ± 3.5%), 27°C (91.5 ± 6.4%), and 22°C (90 ± 2.8%). No survival was observed at 29°C and 31°C after three and two days post-hatching, respectively. Yolk absorption was significantly faster at 27°C (98.92 ± 0.58%), while differences in linear growth were not significant between 22°C, 25°C, and 27°C. The most frequent morphometric anomalies included pericardial edema, yolk edema, and skeletal deformities, with a lower malformation rate at 25°C (4.5%) compared to 22°C and 27°C. Based on these results, it is recommended to stabilize the breeding temperature at 25°C to maximize survival, and at 27°C to promote rapid growth and yolk absorption.

Submit your article to IJAAR Journal

Read morePhotoperiod Effects on Larval Development in Superworms (Zophobas morio) | InformativeBD

Introduction

Clarias jaensis, an African catfish prized for its hardiness, rapid growth, and nutritional and cultural value, shows great potential for aquaculture (Angoni et al., 2016; Zango et al., 2016; Tiogue et al., 2020). However, despite this potential, mastering its rearing in controlled environments remains a major challenge, forcing fish farmers to rely on fry sourced from the wild (Pouomogne, 2008; Kenfack et al., 2019). This practice, in addition to limiting aquaculture production, places significant pressure on natural stocks, which are already weakened by overfishing and climate change. The provision of sufficient fry to meet the growing demand of fish farmers, therefore, depends on mastering the complete life cycle of C. jaensis, particularly its larval development in controlled conditions. Temperature is a key environmental factor in the early development of fish, significantly influencing their survival, growth, and morphogenesis (Cahu et al., 2003; Fontaine and Le Bail, 2004; Gatesoupe et al., 1999). The embryonic and larval stages, which are particularly vulnerable to environmental fluctuations, are especially sensitive to thermal variations. Understanding the influence of temperature on larval development is essential for optimizing farming practices and ensuring successful production in captivity. Previous studies on other Clariidae species, such as C. gariepinus (Legendre and Teugels, 1991; Chebel et al., 2005) and Heterobranchus bidorsalis (Olaniyi and Omitogun, 2013, 2014), have highlighted the significant impact of temperature on larval survival, growth, and development. However, the specific thermal tolerance of C. jaensis remains largely unknown. This study aims to fill this gap by rigorously evaluating the influence of temperature on the survival, yolk absorption, growth, and occurrence of morphometric anomalies in C. jaensis postembryos. By exposing the larvae to different temperatures in a controlled environment, we aim to identify the optimal thermal range that promotes their development and to understand the underlying mechanisms of the observed effects. The results of this research will have a dual impact. On one hand, they will provide basic information for improving the farming practices of C. jaensis in captivity, allowing for the adaptation of incubation and larval rearing conditions to maximize survival, growth, and fry quality. On the other hand, they will contribute to a better understanding of the biology of this species and its sensitivity to temperature variations, which is essential for the sustainable management of its natural populations in the face of climate change challenges.

Reference

Adewolu MA, Akintola SL, Akinwunmi OO. 2009. Growth performance and survival of hybrid African catfish larvae (Clarias gariepinus x Heterobranchus bidorsalis) fed on different diets. The Zoologist 7(1), 45–51.

Adewolu MA, Ogunsanmi AO, Yunusa A. 2008. Studies on growth performance and feed utilization of two Clariid catfish (Clarias gariepinus and Heterobranchus bidorsalis) fingerlings fed different dietary protein levels. Journal of Fisheries and Aquatic Science 3(1), 18–24.

Angoni DE, Eyango MT, Ambela D, Tchoumboué J. 2016. Effet de la densité de mise en charge sur les performances de croissance du poisson chat africain Clarias jaensis Boulanger, 1909 (Pisces: Clariidae) en étang. Innovative Space of Scientific Research Journals 16(130-03), 1–14.

Bagarinao T. 1986. Yolk resorption, onset of feeding and survival potential of larvae of three tropical marine fish species reared in the hatchery. Marine Biology 91, 449.

Bordin ER, Yamamoto FY, Mannes Y, Munhoz RC, Muelbert JRE, Freitas AM, Cestari MM, Ramsdorf WA. 2022. Sublethal effects of the herbicides atrazine and glyphosate at environmentally relevant concentrations on South American catfish (Rhamdia quelen) embryos. Environmental Toxicology and Pharmacology 104, 104057.

Cahu C, Zambonino-Infante JL, Takeuchi T. 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture 227(1-4), 245–258.

Chebel K, Patricia BD, Amirkolaie AK. 2005. Effects of temperature on survival, growth performance and feed utilization of African catfish (Clarias gariepinus) larvae. Aquaculture Research 36(8), 741–748.

Fiogbé ED, Kestemont P, Micha JC. 2003. Absorption du vitellus chez Heterobranchus longifilis. Journal of Fish Biology 62(3), 123–134.

Fiogbé ED, Kpanou JV, Kouassi N. 2003. Effet de la température sur la croissance larvaire de Heterobranchus longifilis (Valenciennes, 1840). Bulletin de la Recherche Agronomique du Bénin 39, 1–9.

Fontaine P, Le Bail P-Y. 2004. Domestication et croissance chez les poissons. INRA Productions Animales 17(3), 217–225.

Gatesoupe FJ. 1999. Ontogenèse, développement et physiologie chez les larves de poissons. Academia.edu.

Haylor GS, Mollah MFA. 1995. Controlled hatchery production of African catfish, Clarias gariepinus: The influence of temperature on early development. Aquatic Living Resources 8(4), 431–438.

Hecht T, Appelbaum S. 1988. Observations on the growth of juvenile African catfish, Clarias gariepinus (Burchell), in intensive culture. Aquaculture 74(3-4), 295–304.

Honji RM, Tolussi CE, Mello PH, Caneppele D, Moreira RG. 2012. Embryonic development and larval stages of Steindachneridion parahybae (Siluriformes: Pimelodidae) – implications for the conservation and rearing of this endangered Neotropical species. Neotropical Ichthyology 10(2), 313–327.

Hossain F, Islam SMM, Ashaf-Ud-Doulah M, Ali MS, Islam MS, Brown C, Shahjahan M. 2021. Influences of salinity on embryonic and larval development of striped catfish Pangasianodon hypophthalmus. Frontiers in Marine Science 8, 781951.

Jezierska B, Lugowska K, Witeska M, Sarnowski P. 2000. Malformations of newly hatched common carp larvae. Electron. J. Pol. Agric. Univ., Fisheries 3(2), 1–14.

Kamler E. 1992. Early life history of fish: An energetics approach. Springer Science & Business Media.

Kenfack Atangana J, Ducarme C, Micha JC. 2019. La pisciculture au Cameroun: bilan et perspectives. International Journal of Biological and Chemical Sciences 13(2), 1140.

Legendre M, Teugels GG. 1991. Développement et tolérance à la température des œufs de Heterobranchus longifilis et comparaison des développements larvaires de H. longifilis et de Clarias gariepinus (Teleostei, Clariidae). Aquatic Living Resources 4, 227–240.

Nguenga D, Breine JJ, Teugels GG, Ollevier F. 1996. Artificial propagation of the African catfish Heterobranchus longifilis (Siluroidei; Clariidae): Description of a simple technique to avoid sacrificing male broodfish for the obtention of milt. Aquaculture 143, 215–217.

Olaniyi WA, Omitogun OG. 2013. Stages in the early and larval development of the African catfish Clarias gariepinus (Teleostei, Clariidae). Zygote 21(3), 314–330.

Olaniyi WA, Omitogun OG. 2014. Embryonic and larval developmental stages of African giant catfish Heterobranchus bidorsalis (Geoffroy Saint Hilaire, 1809) (Teleostei, Clariidae). SpringerPlus 3, 677.

Pouomogne V. 2008. Capture-based aquaculture of Clarias catfish: case study of the Santchou fishers in western Cameroon. In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. pp. 93–108.

Rahman MM, Habib MA, Hossain QZ, Siddiqui MN, Rahman MM, Ahsan MN. 2011. Embryonic development of Clarias batrachus under the influence of aeration and water flow. ECOPRINT 18, 25–31.

Shan X, Quan H, Dou S. 2008. Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae. Aquaculture 277, 14–23.

Tiogue CT, Nyadjeu P, Mouokeu SR, Tekou G, Tchoupou H. 2020. Evaluation of hybridization in two African catfishes (Siluriformes, Clariidae): Exotic (Clarias gariepinus Burchell, 1822) and native (Clarias jaensis Boulenger, 1909) species under controlled hatchery conditions in Cameroon. Advances in Agriculture 2020, Article ID 8985424, 11 pages.

Woynarovich E, Horváth L. 1980. The artificial propagation of warm-water finfishes: A manual for extension. FAO Fisheries Technical Paper No. 201. Rome: Food and Agriculture Organization of the United Nations.

Zango P, Tiogue CT, Nyadjeu P, Kenfack A, Tseuwo SGN, Kamanke SK, Kameni ABT, Tomedi ME, Tchoumboue J. 2023. Effect of the type of pituitary extracts and dose of synthetic hormones HCG and Ovaprim on some reproductive characteristics of the endogenous catfish of Cameroon Clarias jaensis (Boulanger, 1909) in a controlled environment. Asian Journal of Fisheries and Aquatic Research 25(5), 105–116.

Zango P, Tomedi Eyango MT, Efole TE, Tiogue CT, Nguenga D, Kamanke Kamanke SM, Mikolasek O, Tchoumboue J. 2016. Performances de reproduction du poisson chat endogène du Cameroun Clarias jaensis (Boulenger, 1909) en milieu contrôlé. International Journal of Biological and Chemical Sciences 10(2), 533–542.

SourceInfluence of temperature on survival, yolk utilization, growth, and morphometric anomalyrates in post-embryonic Clarias jaensis under controlled conditions 

 

Shea Caterpillar Flour in Tilapia Feed: Impact on Growth Performance | InformativeBD

Effects of incorporation of shea caterpillar flour (Cirina butyrospermi) in the feed on the growth performance of tilapia Oreochromis niloticus (Linnaeus, 1758) raised in basin brazil strain

Kolotcholoman Silue,  from the institute of Ivory Coast . N'golo Ouattara, from the institute of Ivory Coast. Medard Gbai, from the institute of Ivory Coast. and Kouakou Yao, from the institute of Ivory Coast. wrote a Research Article about, Shea Caterpillar Flour in Tilapia Feed: Impact on Growth Performance. Entitled, Effects of incorporation of shea caterpillar flour (Cirina butyrospermi) in the feed on the growth performance of tilapia Oreochromis niloticus (Linnaeus, 1758) raised in basin brazil strain. This research paper published by the International Journal of Biosciences (IJB)an open access scholarly research journal on Biosciences . under the affiliation of the International Network For Natural Sciences| INNSpub. an open access multidisciplinary research journal publisher.

Abstract

With the aim of seeking alternatives to the expensive use of fish meal in fish feed, a study was carried out on the incorporation of shea caterpillar meal (Cirina butyrospermi) into the diet of Oreochromis niloticus. Three diets with progressive incorporation rates of 15% (A15), 20% (A20) and 25% (A25) of C. butyrospermi meal were prepared from a local feed based on agricultural by-products and compared with a control diet (AT) without animal meal. Tilapia larvae with a mean initial weight of 4± 0.05 g were reared in duplicate basins at a stocking density of 100 fry per m3. The fish were fed 4 times a day with a ration of 5% of their total biomass from the start to the end of the experiment. After 90 days of rearing, the best feed conversion and final weight (1.50 ± 0.14; 37.10± 2.25 g, respectively) were obtained with diet A20, followed by diet A15 (1.62 ± 0.08; 35.20± 2.86 g) and A25 (1.74 ± 0.12; 33.03± 3.44 g). The lowest daily growth (0.33± 0.03 g/day) and the highest feed conversion index (1.99± 0.12) were recorded with the AT diet. At the end of the experiment, survival rates were greater than or equal to 92.86%. At the end of this study, shea caterpillar meal can be incorporated into tilapia feed and considered a good protein source.

Submit your article to IJB Journal

Read more Impact of Rooting Hormones on Survival of Three Bamboo Species | InformativeBD

Introduction 

To date, over 80% of global fish production depends on exogenous feed in the form of supplements to feed from the farming environment (FAO, 2018). Several investigations have been carried out in the field of feed, contributing to the rapid expansion and spectacular development of aquaculture worldwide (Kolditz, 2008; FAO, 2018). Against this backdrop, we are witnessing an intensification of fish farming, with widespread and significant use of artificial feeds (Gaye-Siessegger et al., 2005). These highperformance feeds, which provide fish with a complete diet, are produced in developed countries. However, in developing countries, the difficulty lies in acquiring suitable exogenous feeds for feeding fish, especially at juvenile stages (Hung et al., 2001; Coulibaly et al., 2007; Pangni et al., 2008).

These exogenous feeds are considered to be very expensive and, above all, difficult to access, which hampers the expansion of the fisheries sector (Barrows and Hardy, 2001).

Effects of incorporation of shea caterpillar flour (Cirina butyrospermi) in the feed on the growth performance of tilapia Oreochromis niloticus (Linnaeus, 1758) raised in basin brazil strain

The high cost of these feeds is most often due to the use of fishmeal as a protein source. Indeed, the extensive use of fishmeal in feeds is at the root of this high cost (Nguyen et al., 2009; Hardy, 2010). These authors also point out that this input is becoming increasingly scarce and expensive, representing a major limiting factor to aquaculture developments. Faced with this situation, the use of adapted local feeds is necessary to maximize feed conversion efficiency and growth (Guzel and Arvas, 2011).

In Côte d'Ivoire, for example, Oreochromis niloticus production faces several obstacles. Among these obstacles are (i) the low nutritional quality of local feed (ii) the low availability of quality imported feed (iii) the cost of imported feed deemed high by stakeholders, and above all (iv) the lack of fry (MIRAH, 2014, PREPICO, 2019). Yet it has been reported by several authors (Richter et al., 2003; Liebert and Portz, 2005; Zhao et al., 2010) that in tilapia, combining several agricultural by-products with insect meal in feed formulas can reduce production costs while improving fish growth. However, in Côte d'Ivoire, there is a wide range of agricultural by-products that have already been tested in fish feeds (Nguyen et al., 2009; Zhao et al., 2010; Bamba et al., 2018). These include cottonseed and soybean meal, and rice and wheat bran. These raw materials are found in abundant quantities in Côte d'Ivoire (Sangare et al., 2009; FAO, 2014). For all these aforementioned reasons, we chose to use compound feeds based on agricultural by-products and shea caterpillar (C. butyrospermi) meal in the diet of pond-reared fry. With this in mind, the general objective of this study was to test the use of shea caterpillar meal (C. butyrospermi) combined with local agricultural by-products in the diets of tilapia Oreochromis niloticus "Brazil strain" fry.

Reference

Azaza MS, Mensi F, Abdelmouleh A, Kraïem MM. 2005. Development of dry feeds for Nile tilapia Oreochromis niloticus (L., 1758) reared in geothermal waters of southern Tunisia. Bulletin de l’Institut National des Sciences et Technologies de la Mer de Salammbô 32, 23–30.

Balarin JD, Haller RD. 1982. The intensive culture of tilapia in tanks, raceways and cages. In: Muir JF, Roberts RJ, editors. Recent Advances in Aquaculture, Vol. 1. Croom Helm, London, 265–356.

Bamba Y, Ouattara A, Moreau J, Gourene G. 2007. Relative intake of natural and artificial food in the diet of tilapia Oreochromis niloticus in captivity. Bulletin Français de la Pêche et de la Pisciculture 386, 55–68.

Bamba Y, Ouattara N, Ouattara S, Ouattara A, Gourene G. 2014. Effect of diets containing cocoa bean shell and coconut oil cake on the growth of Oreochromis niloticus (Linne, 1758) in pond. International Journal of Biological and Chemical Sciences 8, 1368–1380.

Bamba Y, Ouattara S, Ouattara N, Doumbia L, Ouattara A, DA Costa KS, Gourene G. 2018. Effects of feeding different plant protein sources in combination with cocoa peel, peanut skin, and copra cake on growth performance of tilapia Oreochromis niloticus (Linnaeus, 1758). Science et Technique, Sciences Naturelles et Appliquées. Special Issue 4, 531–544.

Barrows FT, Hardy RW. 2001. Nutrition and feeding. In: Wedemeyer GA, editor. Fish Hatchery Management (2nd ed.). John Wiley & Sons, New York, NY, USA, 483–558.

Campbell D. 1978. Formulation of feeds for rearing Tilapia nilotica in Lac de Kossou, Côte d’Ivoire, 31.

Coulibaly A, Ouattara NI, Kone T, N’Douba V, Snoeks J, Goore BG, Kouamelan EP. 2007. First results of floating cage culture of the African catfish Heterobranchus longifilis Valenciennes, 1840: Effect of stocking density on survival and growth rates. Aquaculture 263, 61–67.

Coulibaly ND, Kondombo C, Imien HL. 2021. Effects of partial substitution of fish meal by maggot meal on the growth of Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Journal of Animal and Plant Sciences 50, 50–61.

Diabagate Y, Bamba Y, Brou KJL, N’zue KR, Ouattara A. 2024. Effects of local feeds containing copra and cotton cakes on pond production performance of juvenile tilapia Oreochromis niloticus (Linnaeus, 1758) “Brazil strain”. Sciences de la Vie, de la Terre et Agronomie 11, 1249–1256.

Dibala CI, Yougbaré MC, Konaté K, Coulibaly ND, Dicko MH. 2018. Production of Nile tilapia (Oreochromis niloticus Linneaus, 1758) with plant protein-based feeds. Journal of Applied Biosciences 128, 12943–12952.

Fanda NJP. 2012. Effect of feed type on the growth of Oreochromis niloticus. Mémoire de fin de cycle, diplôme d’Ingénieur de travaux halieute, ISH Yabassi, Université de Douala, Cameroun, 51.

FAO. 2014. The state of world fisheries and aquaculture 2014. In: Opportunities and Challenges. Rome, Italy, 223.

FAO. 2018. The state of world fisheries and aquaculture 2018. Achieving the sustainable development goals. Rome, Italy, 254.

Gaye-Siessegger J, Focken U, Abel HJ, Becker K. 2005. Improved estimates of trophic change in Nile tilapia, Oreochromis niloticus (L.), using measurements of lipogenic enzyme activities in the liver. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 140, 117–124.

Guzel S, Arvas. 2011. Effects of different feeding strategies on the growth of young rainbow trout (Oncorhynchus mykiss). African Journal of Biotechnology 10, 5048–5052.

Hardy RW. 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research 41, 770–776.

Houndonougbo PK, Chikou A, Sodjinou E, Koudenoukpo CZ, Hazoumen R, Adite A, Bonou C, Mensah AG. 2017. Comparative effect of two diets enriched with incorporated fresh or dried earthworm on growth performance of pond-reared tilapia (Oreochromis niloticus) juveniles. International Journal of Innovation and Applied Studies 20, 742–751.

Hung LT, Tuan A, Lazard J. 2001. Effects of frequency and time of feeding on growth and feed utilization in two Asian catfishes, Pangasius bocourti (Sauvage, 1880) and P. hypophthalmus (Sauvage, 1878). Journal of Aquaculture in the Tropics 16, 171–178.

Kolditz CI. 2008. Nutritional and genetic determinism of muscle lipid content in rainbow trout (Oncorhynchus mykiss): Etude par analyse de l’expression de gènes candidats, du protéome et du transcriptome du foie et du muscle. Thèse de Doctorat de Bordeaux 1, France, 420.

Köprücü K, Özdemir Y. 2005. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 308, 316.

Liebert F, Portz L. 2005. Nutrient utilization of Nile tilapia (Oreochromis niloticus) fed with plant-based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture 248, 111–119.

MIRAH. 2014. Plan Stratégique de Développement de l’Elevage, de la Pêche et de l’Aquaculture en Côte d’Ivoire (PSDEPA 2014–2020), Tome I: Diagnostic – Stratégie de développement – Orientations, 102.

Ndour I, Le Loc’h F, Thiaw OT, Ecoutin JM, Laë R, Raffray J, Sadio O, De Morais LT. 2011. Study of the diet of two species of Cichlidae in contrasting situations in a reverse tropical estuary of West Africa (Casamance, Senegal). Journal des Sciences Halieutique Aquatique 4, 120–133.

Nguyen TN, Davis DA, Saoud IP. 2009. Evaluation of alternative protein sources to replace fishmeal in practical diets for juvenile tilapia (Oreochromis spp.). Journal of the World Aquaculture Society 40, 113–121.

NRC. 2011. Nutrient requirements of fish and shrimp. Natl. Acad. Press, Washington DC, USA, 392.

Pangni K, Atsé BC, Kouassi NJ. 2008. Effect of stocking density on growth and survival of the African catfish Chrysichthys nigrodigitatus (Claroteidae) larvae in circular tanks. Livestock Research for Rural Development 20, 56–61.

Parrel P, Ali I, Lazard J. 1986. The development of aquaculture in Niger: an example of tilapia culture in the Sahelian zone. Bois et Forêts des Tropiques 212.

Prepico. 2019. Projet de Relance de la Production Piscicole Continentale en République de Côte d’Ivoire. Final Report, 326.

Richter N, Siddhuraju P, Becker K. 2003. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture 217, 599–611.

Riviere R. 1978. Manuel alimentation des ruminants domestiques en milieu tropical. Institut d’Elevage et de Médecine Vétérinaire des Pays Tropicaux, Paris, 527.

Sangare A, Koffi E, Akamou F, Fall CA. 2009. Rapport national sur l’état des ressources phytogénétiques pour l’alimentation et l’agriculture. Republic of Côte d’Ivoire, Ministry of Agriculture, 64.

Sarr SM, Kabré AJT, Nias F. 2013. Diet of the yellow mullet (Mugil cephalus, Linnaeus, 1758, Mugilidae) in the Senegal River estuary. Journal of Applied Biosciences 71, 5663–5672.

Siddiqui AQ, Al-Harbi AH. 1995. Evaluation of three species of tilapia, red tilapia, and a hybrid tilapia as a culture species in Saudi Arabia. Aquaculture 138, 145–157.

Silue K, Ouattara N, Kouassi NS, Yao K. 2024. Evaluation of palm weevil larvae meal (Rhynchophorus phoenicis) as an alternative protein source for juvenile tilapia (Oreochromis niloticus) (Linnaeus, 1758) strain “Brazil” in aquaria. International Journal of Fisheries and Aquatic Studies 12, 42–46. DOI: 10.22271/fish.2024.v12.i3a.2931.

Zhao H, Jiang R, Xue M, Xie S, Wu X, Guo L. 2010. Fishmeal can be completely replaced by soy protein concentrate by increasing feeding frequency in Nile tilapia (Oreochromis niloticus) less than 2 g. Aquaculture Nutrition 16, 648–653.

Zhao HX, Cao JM, Wu JK, Tan YG, Zhou M, Liang HO, Yang DW. 2007. Studies of arginine requirement for juvenile cobia. Journal of South China Agricultural University 28, 87–90.

Source Effects of incorporation of shea caterpillar flour (Cirina butyrospermi) in the feed onthe growth performance of tilapia Oreochromis niloticus (Linnaeus, 1758) raisedin basin brazil strain  

Stocking Density Impact on Tilapia Juvenile Growth and Survival | InformativeBD

Effect of stocking density on the growth and survival of Tilapia juveniles (Sarotherodon melanotheron) reared in happas at Layo station (Dabou, Côte d’Ivoire)

Yao Laurent Alla, Kouamé Marcel N’dri, Yao Nicolas Amon, Kouadio Mesac N’guessan, Kouassi Tano, and Kouakou Yao,  from the different institute of the Côte d’Ivoire. wrote a research article about, Stocking Density Impact on Tilapia Juvenile Growth and Survival. entitled, Effect of stocking density on the growth and survival of Tilapia juveniles (Sarotherodon melanotheron) reared in happas at Layo station (Dabou, Côte d’Ivoire). This research paper published by the International Journal of Biosciences (IJB).  an open access scholarly research journal on Biosciences. under the affiliation of the International Network For Natural Sciences | NNSpub. an open access multidisciplinary research journal publisher.

Abstract

A study was carried out to evaluate the effect of stocking density on the growth and survival of Sarotherodon melanotheron juveniles. To do this, 300 individuals with an initial average weight 4.13 ± 1.96 g and an initial average length 5.79 ± 0.89 cm were monitored for 42 days, in triplicate, at four densities (0.2; 0.4; 0.6 and 0.8 ind. /L) in happas of 50 liters volume. Fish were fed at 10% of their biomass with koudijs feed. A weekly sampling was carried out, during which ten (10) individuals were taken at random, they were weighed and measured individually. The physico-chemical parameters of water were measured daily. At the end of the experiment, the 0.8 ind. /L density gave the best growth results, with values of 16.27 ± 2.36g; 9.17 ± 0.92 cm; 0.29 ± 0.08 g/d ; 2.11 ± 0.08 and 443.67 ± 56.44 g, respectively for final average weight, final average length, ADG, condition factor and total biomass. For the survival rate, the highest value (95.00 ± 1.33%) was recorded in individuals with a density of 0.4 ind./L while those with a density of 0.8 ind./ L gave the lowest survival (80.00 ± 1.33%). Other densities could be tested and in other breeding structures to better appreciate the influence of this factor on the growth and survival of this species.

Submit your article to IJB Journal

Read more Tomato Nematode Diagnosis in Daloa, Côte d’Ivoire | InformativeBD

Introduction

In Côte d’Ivoire, fish is the most accessible source of animal protein for all social classes, due to its availability in all seasons and its relatively lower price compared to meat (MIRAH, 2022a). Average annual consumption per capita is 25.6 kg (MIRAH, 2019). National fish production, estimated at around 100 000 tonne/year, remains insufficient regarding the needs of the population, estimated at over 600,000 tonne/year (MIRAH, 2022a). National aquaculture production is 4,500 tonnes per year, or 4.5% of national fish production. The annual deficit of almost 500,000 tonne/year is made up by imports in frozen form (Avit et al., 2012; Ducroquet et al., 2017). This represents a significant currency outflow of 310 billion CFA francs in the national budget (MIRAH, 2022a).

Effect of stocking density on the growth and survival of Tilapia juveniles (Sarotherodon melanotheron) reared in happas at Layo station (Dabou, Côte d’Ivoire)

In order to raise the level of local production, the country has initiated several aquaculture and fisheries development programs, the latest of which are the PSDEPA (Strategic Plan of Livestock, Fishery and Aquaculture Development) (2014-2020), PSTACI (Strategic Program of Aquaculture Transformation in Côte d’Ivoire) and PONADEPA 2022-2026 (National Policy of Livestock, Fishery and Aquaculture Development). The aim is to reduce the country's dependence on the outside world and enable Ivorians to consume fresh local fish at a competitive price (MIRAH, 2022b).

Public organization including the Oceanological Research Center (ORC) were created and tasked with identifying and studying local species with aquaculture potential, in order to make them available to fish farmers (MIRAH, 2022a). Among the species, the Tilapia Sarotherodon melanotheron is a good candidate due to the quality of its flesh.

Effect of stocking density on the growth and survival of Tilapia juveniles (Sarotherodon melanotheron) reared in happas at Layo station (Dabou, Côte d’Ivoire)

However, for successful intensive farming of this species, it is important to control stocking density, which remains a factor determining the productivity of fish farming systems. High stocking densities are a potential source of stress that can limit fish growth and well-being when physiological and spatial requirements are not met (Le Ruyet et al., 2008). Fry from high-performance strains still fail to grow properly unless good stocking practices are followed (Osofero et al., 2009). Stocking density is a major concern in fish farming. This is why, to contribute to the control of the breeding of tilapia S. melanotheron, we are undertaking the present study which has the theme "Effect of stocking density on the growth and survival of juveniles in happas".

The general objective of this work is to determine the optimal density which allows for better growth and survival results during the rearing of S. melanotheron juveniles.

Reference

Amoussou TO, Toguyeni A, Imorou TI, Chikou A, Youssao AKI. 2016. Caractéristiques biologiques et zootechniques des tilapias africains Oreochromis niloticus (Linnaeus, 1758) et Sarotherodon melanotheron Ruppell, International Journal of Biological and Chemical Sciences 10(4), 1869-1887. http://dx.doi.org/10.4314/ijbcs.v10i4.35

Avit JBLF, Bony KY, Kouassi NC, Konan KF, Assemian O, Allouko JR. 2012. Conditions écologiques de production de fingerlings d‘Oreochromis niloticus (Linné, 1758) en association avec le riz WITA 12 en étang. Journal of Applied Biosciences 59, 4271-4285.

Ducroquet H, Tillie P, Louhichi K, Gomez YPS. 2017. L’agriculture de la Côte d’Ivoire à la loupe: Etats des lieux des filières de productions végétales et animales et revue des politiques agricoles. Publications Office of the European Union, Luxembourg, 244 p.

Gbaï M, Yao K, Atsé Y. 2014. Etude comparée de la croissance et de la survie des hybrides Sarotherodon melanotheron X Oreochromis niloticus, de O. niloticus et des tilapias autochtones des lagunes Ivoiriennes (S. melanotheron et Tilapia guineensis). Livestock Research for Rural Development 26(1), 1-8.

Jennings DP, Williams JD. 1993. Factors influencing the distribution of blackchin tilapia, Sarotherodon melanotheron, in the Indian River system, Florida. Northeast Gulf Science 12(2), 111-117.

Le Ruyet JP, Labbe L, Le Bayon N, Severe A, Le Rou A, Le Delliou H, Quemener L. 2008. Combined effects of water quality and stocking density on welfare and growth of rainbow trout. Aquatic Living Resources 2, 185-195.

MIRAH. 2022a. Récentes évolutions dans le secteur de l’aquaculture en Côte d’Ivoire. Atelier de validation de la méthodologie du système intégré de collecte et de traitement de données statistiques de production aquacole, Abidjan, 06 avril 2022, 35 p.

MIRAH. 2022b. Politique nationale de développement de l’élevage, de la pèche et de l’aquaculture (PONADEPA 2022-2026), Abidjan Côte d’Ivoire, 178 p.

MIRAH. 2019. Annuaire des statistiques des pêches et de l’aquaculture. Direction de l’Aquaculture et des pêches (DAP), 30 p.

Osofero SA, Otubusin SO, Daramola JA. 2009. Effect of stocking density on O. niloticus growth and survival in bamboo-net cages. African Journal of Biotechnology  8(7), 1322-1325.

Ouattara NI, N’Douba V, Kone T, Snoeks J, Philippart JC. 2005. Performances de croissance d’une souche isolée du tilapia estuarien Sarotherodon melanotheron (Perciformes, Cichlidae) en bassins en béton, en étangs en terre et en cages flottantes. Annale de l’Université Marien Ngouabi 6(1), 113-119.

Ouattara NI, Teugels GG, N’Douba V, Philippart JC. 2003. Aquaculture potential of the black-chinned tilapia, Sarotherodon melanotheron (Cichlidae). Comparative study of the effect of stocking density on growth performance of landlocked and natural populations under cage culture conditions in Lake Ayame (Côte d’Ivoire), Aquaculture Research 34(13), 1223-1229.

Ross LG. 2000. Environmental physiology and energetics. In Tilapias: Biology and Exploitation, Beveridge MCM, McAndrew BJ (eds). Springer Netherlands (Fish and Fisheries Series): Netherlands, 89-128.

SourceEffect of stocking density on the growth and survival of Tilapia juveniles (Sarotherodonmelanotheron) reared in happas at Layo station (Dabou, Côte d’Ivoire)