Bioelectronic Systems: A Novel Approach in Controlled Drug Delivery | InformativeBD

Bioelectronic systems in controlled drug delivery systems- A novel dosage form

V. T. Iswariya, from the institute of India. Sitawar Anusha, from the institute of India. Varada Bala Gnana Laxmi, from the institute of India. Akshay, from the institute of India and T. Ramarao, from the institute of India. wrote a Review Article about, Bioelectronic Systems: A Novel Approach in Controlled Drug Delivery. Entitled, Bioelectronic systems in controlled drug delivery systems- A novel dosage form. This research paper published by the International Journal of Biosciences (IJB). an open access scholarly research journal on Biosciences. under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher. 

Abstract

Electronic drug delivery systems (EDDS) are an interesting advancement in drug delivery technology. They are portable, interactive, wirelessly networked, and enable patient-administered medication, which lowers overall healthcare costs. Controlled DDS maintains drug plasma levels constantly by releasing the definite dose of the drug at each time point for a predetermined duration. This helps in reducing the dose and dosing frequency and improves patient compliance. Lesser drug exposure to the biological environment reduces drug toxicity and adverse effects. Among controlled release. Transdermal delivery mode (referred to as patches) is more preferably used among them because of great patient compliance. Bioelectronic systems play a crucial role in electronically controlled drug delivery systems by integrating electronic components with biological systems to deliver drugs with precision and efficiency. Their efficiency is further increased when integrated into remotely operated systems. One of the main motivations for developing EDDS was to increase patient adherence to recommended drug regimens. Moreover, EDDS have demonstrated the ability to administer drugs to specific body locations on demand. This review concentrates on electronic medication delivery systems, despite the fact that there are many different types of drug delivery devices on the market. Along with their mechanism of actions are also discussed.

Submit your article to IJB Journal

Read morePhytochemical Evolutionin Three Charcoal-Preserved Plantain Cultivars (Musa sp.) | InformationBD 

Introduction

Controlled drug delivery system This is the drug delivery system in which a constant level of a drug is maintained in blood and tissue for an extended period. Controlled DDS maintains drug plasma levels constantly by releasing the definite dose of the drug at each time point for a predetermined duration (Tekade et al., 2018). This helps in reducing the dose and dosing frequency and improves patient compliance. Lesser drug exposure to the biological environment reduces drug toxicity and adverse effects.

Evolution of the controlled release dosage forms First-generation: This generation of dosage forms mainly involves four types of mechanisms for drug release, which include the oral and transdermal formulations. The mechanisms involved are dissolution, osmosis, diffusion, and ion exchange. Diffusion and dissolution-controlled systems are the most widely used mechanisms of drug delivery. The success of the first generation of drugs is mainly the development of the oral and transdermal routes (Park et al., 2014).

Second-generation: These are not widely used. Electrically delivery systems were developed for introducing insulin. Due to its lesser bioavailability, it is administered many times higher per dose than is required, which results in toxicity. In the last decade of the second generation, nanoparticles that target genes and tumors were studied. 

The third generation: involves the delivery of poorly water-soluble drugs, long-term and non-invasive technology for delivering proteins/nucleic acids/peptides, and drug delivery to the targeted site using nanoparticles (Yun et al., 2015).

Formulations of controlled-release medication Oral, intravenous, and transdermal patches are easily developed. Among controlled release, transdermal delivery mode (referred to as patches) is more preferably used among them because of great patient compliance.

Reference

Arunachalam A, Karthikeyan M, Kumar DV, Prathap M, Sethuraman S, Ashutoshkumar S, Manidipa S.2010. Transdermal drug delivery system: a review. Journal of Current Pharma Research 1, 70.

Cabuz C, Herb WR, Cabuz EI, Lu ST. 2001. The dual diaphragm pump. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). 519-522. DOI: 10.1109/MEMSYS.2001.906593.

Domingo-Lopez DA, Lattanzi G, Schreiber LH, Wallace EJ, Wylie R, O’Sullivan J, Dolan EB, Duffy GP. 2022. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Advanced Drug Delivery Reviews 185, 114280. DOI: 10.1016/j.addr.2022.114280.

Farra R, Sheppard NF, McCabe L, Neer RM, Anderson JM, Santini JT, Cima MJ, Langer R. 2012. First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip, Sci. Transl. Med. 4, 122ra21-122ra21

Gao N, Li XJ, 2013. Controlled drug delivery using microfluidic devices In Microfluidic Devices for Biomedical Applications (pp. 167-185e).

Ginsberg BH. 2019. Patch pumps for insulin. Journal of Diabetes Science and Technology 13, 27-33.

Grimm M, Koziolek M, Becker D, Iordanov V, Zou H, Shimizu J, Wanke C, Weitschies W. 2013.  Investigation of pH and temperature profiles in the GI tract of fasted human subjects by Intellicap® system. J Pharm Sci. 104(9), 2855-63. DOI: 10.1002/jps.24274.

Guk K, Han G, Lim J, Jeong K, Kang T, Lim EK, Jung J. 2019. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 9(6), 813.

Jonas O, Landry HM, Fuller JE, Santini JT, Baselga J, Tepper RI. 2015. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl. Med. 7, 284ra257. DOI: 10.1126/scitranslmed.3010564.

Joshitha C, Sreeja BS, Radha S. 2017. A review on micropumps for drug delivery system. In2017 international conference on wireless communications, signal processing and networking (WiSPNET) 11(18), 186-190.

Lin S, Yuk H, Zhang T, Parada GA, Koo H, Yu C, Zhao X. 2016.  Stretchable Hydrogel Electronics and Devices, Adv. Mater 28, 4497–4505.

Ma X, Wu X, Cao S, Zhao Y, Lin Y, Xu Y, Ning X, Kong D. 2023. Stretchable and Skin‐Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. Advanced Science 10(10), e2205343. https://doi.org/10.1002/advs.202205343

Mariello M, Eş I, Proctor CM. 2023. Soft and Flexible Bioelectronic Micro‐Systems for Electronically Controlled Drug Delivery. Advanced Healthcare Materials. 2023. https://doi.org/10.1002/adhm.202302969

Mebert AM, Baglole CJ, Desimone MF, Maysinger D. 2017. Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology 09(Pt 1), 753-770. DOI: 10.1016/j.fct.2017.05.054.

Mitragotri S, Kost J. 2004. Low-frequency sonophoresis: A review, Adv. Drug Deliv. Rev. 56, 589–601.

Mohith S, Karanth PN, Kulkarni SM. 2019. Recent trends in mechanical micropumps and their applications: a review. Mechatronics 60, 34–55.

Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A. 2008. MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B: Chemical. 130(2), 917-42.

Pamornpathomkul B, Ngawhirunpat T, Tekko IA, Vora L, McCarthy HO, Donnelly RF. 2018. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. European Journal of Pharmaceutical Sciences 121, 200-209.

Park K. 2014. Controlled drug delivery systems: past forward and future back. Journal of Controlled Release 190, 3-8.

Patel S, Ershad F, Zhao M, Isseroff RR, Duan B, Zhou Y, Wang Y, Yu C. 2022. Wearable electronics for skin wound monitoring and healing. Soft science 2, 9. DOI: 10.20517/ss.2022.13

Peyrot M, Rubin RR. 2009. Patient-reported outcomes for an integrated real-time continuous glucose monitoring/insulin pump system, Diabetes Technol. Ther. 11, 57–62.

Pirmoradi FN, Jackson JK, Burt HM, Chiao M. 2011. A magnetically controlled MEMS device for drug delivery: design, fabrication, and testing. Lab on a Chip 18, 3072-80.

Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. 2004. Integrated microsystems for controlled drug delivery. Advanced Drug Delivery Reviews 56(2), 185-98.

Rosen Y, Gurman P, Elman N. 2017. Drug delivery: An integrated clinical and engineering approach.

Santini JT, Richards C, Scheidt R, Cima MJ, Langer RS. 2000. Microchip technology in drug delivery. Ann Med. 32(6), 377-9. DOI: 10.3109/07853890008995941.

Sim WY, Yoon HJ, Jeong OC, Yang SS. 2003. A phase change type of micropump with aluminum flap valves. J. Micromech. Microeng 13, 286–294.

Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, Song C, Kim SJ, Lee DJ, Jun SW, Yang S.  2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology 9(5), 397-404.

Suzuki H, Yoneyama R. 2002. A reversible electrochemical nanosyringe pump and some considerations to realize low power consumption, Sens. Actuators B: Chem 86, 242–250.

Tekade RK.  2018. Basic fundamentals of drug delivery. Academic Press, an imprint of Elsevier, London, United Kingdom.

Ummadi S, Shravani B, Rao NR, Reddy MS, Sanjeev B. 2013. Overview on controlled release dosage form. System 7, 51-60.

Van Der Schaar PJ, Dijksman JF, Broekhuizen-De Gast H, Shimizu J, Van Lelyveld N, Zou H, Iordanov V, Wanke C, Siersema PD. 2013. A novel ingestible electronic drug delivery and monitoring device, Gastrointest. Endosc 78, 520–528.

Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. 2020.  Recent advances in micro-electro-mechanical devices for controlled drug release applications. Frontiers in Bioengineering and Biotechnology 8, 827.

Xu TB, Su J. 2005. Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sensors and Actuators A: Physical 121, 267-74.

Yun KS, Cho IJ, Bu JU, Kim CJ, Yoon E. 2002.  A surface tension driven micropump for low voltage and low power operations. J. MEMS 11, 454–461.

Yun YH, Lee BK, Park K. 2015. Controlled Drug Delivery: Historical perspective for the next generation. Journal of Controlled Release 219, 2-7.

Source :  Bioelectronic systemsin controlled drug delivery systems- A novel dosage form 

 

Phytochemical Evolution in Three Charcoal-Preserved Plantain Cultivars (Musa sp.) | InformationBD

Evolution of phytochemicals compounds of three plantain cultivars (Musa sp.) preserved by a method involving charcoal

Sabli Loh Tinnde Charles, from the institute of Côte d’Ivoire. Wohi Maniga, from the institute of Côte d’Ivoire. Coulibaly Souleymane, from the institute of Côte d’Ivoire. and Kouadio N’guessan Eugene Jean Parfait, from the institute of Côte d’Ivoire. wrote a research article about, Phytochemical Evolution in Three Charcoal-Preserved Plantain Cultivars (Musa sp.). entitled, Evolution of phytochemicals compounds of three plantain cultivars (Musa sp.) preserved by a method involving charcoal. This research paper published by the International Journal of Biosciences (IJB). an open access scholarly research journal on Biosciences. under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher. 

Abstract

Despite the good nutritional qualities and large production areas of plantain bananas, their production is subject to a lack of inexpensive conservation techniques that are accessible to everyone. For this, a conservation study combining charcoal and polyethylene bags was carried out. For this work, the fruits of the plantain varieties Saci, Big-Ebanga and Orishélé harvested at the mature stage were preserved in six different storage media. Some physicochemical and antinutritional parameters such as polyphenols, flavonoids and phytates of the pulps of the three varieties of plantain bananas were determined according to standard methods. The results obtained indicate that the storage time in the media containing charcoal exceeded 30 days, unlike the control media where the storage times were 12 and 24 days. of polyphenols between 120.66 and 1961.10mg/100g DM and finally of flavonoids between 0.76 and 7.23mg/100g DM. Regarding the antinutritional parameters, the phytate levels vary between 42.66 and 64.05mg / 100g DM.

Submit your article to IJB Journal

 Introduction

The plantain banana is a fruit which, in addition to contributing to food security, is an excellent source of carbohydrates for its high content of complex carbohydrates (starch), thus providing consumers with the bulk of total energy with rates varying from 89 to 90.52 Kcal per 100g of dry matter (FAO, 2003). Apart from carbohydrate parameters, plantain also contains phytochemicals. Indeed, they are natural and biologically active chemical compounds in plants. They act as a natural defense system for host plants and provide color, aroma and flavor. They are localized on fruits, seeds, stem epidermis, flower and other peripheral surfaces of plants. They are a group of bioactive substances inherent in plants and are responsible for protecting these plants against environmental stress, microbial attacks, insects and other external aggressions (Daramola and Adegoke, 2011). The consumption of foods rich in phytochemical compounds such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., allows, on a curative or preventive basis, to spare consumers from diseases such as diabetes, obesity, cancer, cardiovascular diseases, etc. (Ashwani et al., 2023). In addition, the plantain (Musa spp), like most tropical fruits and vegetables, is highly perishable. Given its perishable nature, a practical, accessible and inexpensive method of preservation, unlike known methods, has been tested with the aim of contributing sustainably to food security by reducing post-harvest losses. The interest of this work is then to evaluate the impact of this charcoal-based preservation method on some phytochemical parameters of these plantain fruits during storage

Reference 

Aganga AA, Mosase KW. 2003. Tannins content, nutritive value and dry matter digestibility of Lonchocarpus capassa, Ziziphus mucronata, Sclerocarya birrea, Kirkia acuminata and Rhus lanceaseeds. Animal Feed Science and Technology 91, 107-113.

Aruoma OI. 1994. Nutrition and health aspects of free radicals and antioxidants. Food and chemical toxicology 32(7), 671-683.

Ashwani K, Nirmal P, Mukul K, Anina J, Vidisha T, Emel O, Charalampos P, Maomao Z, Tahra E, Sneha K, Fatih O. 2003. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 28(2), 887. DOI: 10.3390/molecules28020887

Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG. 2011. Effect of germination on the phytase activity, phytates and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology 48(6), 724-729.

Daramola B, Adegoke GO. 2011. Bitter kola (Garcinia kola) seeds and health management potential, In Preedy VR, Watson RR, Patel VB, (Editors). Nuts and Seeds in Health and disease prevention (1st edition) Academic press (imprint of Elsevier) Vurlington, San diego 213-220.

Gnakri D, Kamenan A. 1990. Degré de maturité et conservation de la banane plantain (Musa sp.). Qualité physicochimique de l’amidon. Cahiers des industries Agroalimentaires, Cahier Scientifique et Technique 107(4), 251-256.

Kouadio KA, Coulibaly S, Soro LC, Ocho-Anin AL. 2013. Determination of the optimal point of cut fruit of plantain hybrids PITA 3, PITA 8 and varieties of plantain Lorougnon and Horn 1. International Journal of Agriculture and Food Science 3, 16-21.

Leifert WR, Abeywardena MY. 2008. Cardioprotective actions of grape polyphenols. Nutrition Research 28(11), 729-737.

Limasset B, Le Doucen C, Dore JC, Ojasoo T, Damon M, Crastes de Paulet A. 1993. Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Multivariate analysis of structure-activity relationships (SAR). Biochemical Pharmacological 46, 1257-1271.

Loewus F. 2002. Biosynthesis of Phytate in Food Grains and Seeds. In: Food Phytates (Eds.) Reddy NR, Sathe SK, CRC Press. Florida, USA p. 53-61.

Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honey, as well as their radical scavenging activity. Food Chemistry 91, 571-577.

Mohammed AI, Ponnamperuma AJ, Youssep SH. 1986. New chromophore for phytic acid determination. Cereal Chemistry 63, 475-478.

Ngoh NG, Brat P, Tchango TJ, Tomekpe K, Alter P, Fokou E, Etoa FX. 2005. Effet de la cuisson sur la teneur en polyphenols totaux de quelques cultivars de bananiers (Musa sp.) au Cameroun. Maîtrise des Procédés en vue d’améliorer la qualité et la sécurité des aliments, Utilisation des OGM, Analyse des risques en agroalimentaire, Ouagadougou, 8-11 Novembre 2005.

Pedneault K, Leonharts A, Gosselin A, Ramputh A, Arnason JT. 2001. Influence de laculture hydroponique de quelques plantes médicinales sur la croissance et la concentration encomposés secondaires des organes végétaux. Texte de conférence. Canada p. 1-5.

Raboy V. 1990. The biochemistry and genetics of phytic acid synthesis in higher plants. In: Morre, EJ; Boss, Loewus WS, FA Inositol metabolism in plants. New York: John Wiley and Sons 1, 55-76.

Ramassamy C. 2006. Emerging role of polyphenol compounds in the treatment of neurodegenerative deseases a review of their intracellular targets. European Journal of Pharmacology 545(1), 51-64.

Rice-Evans C, Miller N, Paganga G. 1997. Antioxydant properties of phenolic compounds. Triends in plant science 2(4), 152-159.

Siddhuraju P, Becker K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from 3 different agroclimatic origins of drumstick tree (Moringa oleifera Lam). Journal Agricultural Food Chemistry 51(8), 2144-2155.

Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxydant substrates and antioxydants by means of Folin-ciocalteu reagent. Methods in Enzymology 299, 152-178.

Sung HG, Shin HT, Ha JK, Lai HL, Cheng KJ, Lee JH. 2005. Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology 96(11), 1297-1303.

Viera RF, Grayer RJ, Paton AJ. 2003. Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry 63, 555-67.

Source Evolution of phytochemicals compounds of three plantain cultivars (Musa sp.) preserved by amethod involving charcoal