Showing posts with label Antioxidant. Show all posts
Showing posts with label Antioxidant. Show all posts

Anticytotoxic and Antioxidant Potential of Moringa oleifera Flower Extract | InformativeBD

Anticytotoxic and antioxidant activities of ethanolic extract of dried flowers of Moringa oleifera

G. Rajeswari, from the institute India. S. Parvathi,  from the institute India. and S. Palanival, from the institute India. wrote a Research Article about, Anticytotoxic and Antioxidant Potential of Moringa oleifera Flower Extract. entitled, Anticytotoxic and antioxidant activities of ethanolic extract of dried flowers of Moringa oleifera. This research paper published by the, Journal of Biodiversity and Environmental Sciences (JBES). an open access scholarly research journal on Biodiversity. under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher.

Abstract

Moringa oleifera is a common plant and known for various medicinal properties. The research work was conducted to investigate the anticytotoxic and antioxidant activity of dried flower powder extract of leaf Moringa oleifera. The ethanol extracts from flower of moringa plants contain severalphytochemicals such asalkaloids,amino acids, quinones, cardiac glycosides, flavonoids, phenols, saponins, tannins, terpenoids, coumarins and triterpenoids.The antioxidant activities of different concentrations of ethanol extracts of the leaves were determined by the three assay techniques i.e., DPPH radical scavenging assay, Ferric reducing ability power (FRAP). The type of chemical bonds is identified through FTIR analysis. The results obtained in the present study indicate that the leaves of Moringa oleifera are a potential source of anticytotoxic and antioxidants.

Submit your article to JBES Journal


Introduction

Moringa oleifera (MO) grows owing to its nutrientrich seeds, edible leaves and flowers that can be used as food, medication, cosmetic oil, or livestock feed. The height varies between 5 to 10 meters. Different experiments have been demonstrated positive effects on health. MO is also used in developing countries as a source of fruits, medicinal plants, and edible oil. It is an essential nutrient- rich vegetative plant and is commonly considered as a versatile food that can be eaten in all sections (Bharali et al., 2003). Moringa claimed as a nutrient-rich due to its anti-ulcer, antidiabetic, hepatoprotective, diuretic and cholesterol lowering capacity. It has also been used in skin and hair care products (Brown et al., 1998). Moringa oleifera Lam., also known as the drumstick tree.’ It is mostly found in areas having warm and dry and moist. The most important bioactive compounds of plants are alkaloids, flavonoids, tannins, and phenolic compounds (Caceres et al., 1992). Different parts of this plan contain a profile of important minerals, and a good source of protein, vitamin, a carotene, amino acids and various phenolics. In the tropics, it is used as forage for livestock, and in many countries, it is used as a micronutrient powder to treat various ailments (Clarke Hans Thacher, 2007). Moringa oleifera has several medicinal properties and has potentiality to cure many diseases (Donli et al., 2003). It is used to treat diseases such as diabetes, heart disease, anaemia, arthritis, respiratory problems, skin, liver problems, paralysis, sterility, rheumatism, digestive disorders and many more (Eilert et al., 1981). The anticancer result of Moringa has been tested for its chemo-protective properties and has been shown to prevent the development of various human cancer cells (Fahey, 2005). M. oleifera has several bioactive compounds with antitumor activity.

Reference

Bharali R, Tabassum J, Azad MR. 2003. Chemo modulatory effect of Moringa oleifera Lam. on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papilloma genesis in mice. Asian Pac J Cancer Prev. 4(2), 131.

Brown J E and Rice Evans CA, 1998. Luteolin rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radical Res. 29, 247-255.

Caceres A, Saraiva A, Rizzio S, Zabala L, De Leon E, Navy F, 1992. Pharmacological properties of Moringa oleifera. 2: screening for antispasmodic, anti-inflammatory and diuretic activity. J Ethnopharmacology 36(3), 233

Clarke Hans Thacher, 2007. A Handbook of Organic Analysis, IV Edn., CBS Publishers, New Delhi. Devi Pratibha.

Donli PO, Dauda H. 2003. Evaluation of aqueous Moringa seed extract as a seed treatment bio fungicide for groundnuts. Pest Management Sci. 59(9), 1060.

Eilert U, Wolters B, Narsdtedt A. 1981. The antibiotic principle of seeds of Moringa oleiferaand Moringa stenopetala. Planta Med. 42(1), 55.

Fahey J, 2005. Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal 1(5), 231.

Özcan MM, Ghafoor K, Juhaimi F, Ahmed IAM, Babiker EE. 2019. Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the Moringa seed oils. South African Journal of Botany 124, 333-337.

Adams HR, CampBJ. 1996. The isolation and identification of three alkaloids from Acacia berlandieri. Toxicon 4(2), 85-90.

Jha DK, Panda L, Lavanya P, Ramaiah S, Anbarasu A. 2012. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Applied biochemistry and Biotechnology 168, 980-990.

Verma KC, Verma SK. 2010. Alkaloids analysis in root and leaf fractions of Sarpagandha (Rauwolfia serpentina). Agricultural Science Digest 30(2), 133-135.

Yemm EW, Cocking EC, Ricketts RE. 1995. The determination of amino-acids with ninhydrin. Analyst 80(948), 209-214.

Bitenc J, Pavčnik T, Košir U, Pirnat K. 2020. Quinone based materials as renewable high energy density cathode materials for rechargeable magnesium batteries. Materials 13(3), 506.

Ebana RUB, Madunagu BE, Ekpe ED,Otung IN. 1991. Microbiological exploitation of cardiac glycosides and alkaloids from Garcinia kola, Borreriaocymoides, Kola nitida and Citrus aurantifolia. Journal of Applied Microbiology 71(5), 398-401.

Sankhalkar S, Vernekar V. 2016. Quantitative and Qualitative analysis of Phenolic and Flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Research 8(1), 16.

Santhi K, Sengottuvel R. 2016. Qualitative and quantitative phytochemical analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633-640.

Sharma V, Paliwal R. 2013. Isolation and characterization of saponins from Moringa oleifera (Moringaceae) pods. Int J. Pharm. Pharm. Sci, 5(1), 179-183.

Teixeira EMB, Carvalho MRB, Neves VA, Silva, MAArantes-Pereira L. 2014. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. Leaves. Food chemistry, 147, 51-54.

Santhi K, Sengottuvel R. 2016. Qualitative and quantitative phytochemical analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633-640.

Kasolo JN, Bimenya GS, Ojok L, Ochieng J, Ogwal-Okeng JW. 2010. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities.

UC R, NAIR VMG. 2013. Phytochemical analysis of successive reextracts of the leaves of Moringa oleifera Lam. International Journal of Pharmacy and pharmaceutical sciences, 5, 629-634.

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology. 299, 152-178.

Marinova, Batchvarov V. 2011. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian Journal of Agricultural Science, 17(1), 11-24.

Nobossé P, Fombang EN, Mbofung CM. 2018. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. Leaves. Food science & nutrition 6(8), 2188-2198.

Steenkamp V, Gouws MC. 2006. Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer. South African Journal of Botany 72(4), 630-633.

Shaw JE, Sicree RA, Zimmet PZ. 2010. Global estimates of the prevalence of diabetes for2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14.

Barik R, Jain S, Qwatra D. 2008. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in STZ-nicotinamide induced type II diabetes in rats. Indian J. Pharmacol. 40, 19.

Vincent AM, Russell JW, Low P. 2004. Oxidative stress in the pathogenesis of diabetic. 612-28.

Pari L, Latha M. 2005. Antidiabetic effect of Scopariadulcis: Effect on lipid peroxidation streptozotocin diabetes. Gen. Physiol. Biophys. 24, 13-26.

Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism, and structure activity relationships. J Nutr. Biochem. 13, 572- 584.

Picton SF, Flatt PR, McClenghanNH. 2001. Differential acute and long-term actions of succinicacid monomethyl ester exposure on insulin secreting BRAIN-BD 11 cells. Int. J. Exp. Diab. Res. 2, 19- 27.

Source : Anticytotoxic and antioxidant activities of ethanolic extract of dried flowers of Moringa oleifera 

 


 

Acacia nilotica _Recovery from Pesticide ExposureBark | InformativeBD

Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Acacia nilotica from Organophosphate Pesticides Exposure in mice model

Raphael Mwezi, Revocatus L. Machunda, and  Hamisi M. Malebo, from the different institute of the Tanzania. wrote a research article about, Acacia nilotica _Recovery from Pesticide ExposureBark, entitled, "Recovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Acacia nilotica from Organophosphate Pesticides Exposure in mice model".This research paper published by the International Journal of Biosciences | IJB. an open access scholarly research journal on Biology, under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher.

Abstract

Organophosphates (OPs) pesticides are reported to cause acute poisoning because of their ability to inhibit acetyl cholinesterase enzyme (AChE). Available antidotes drugs are atropine sulfur, Pralidoxime (2-pyridine aldoxime methyl chloride) and diazepam, which act to recover OP-AChE inhibition. These are controlled drugs not easily accessed and very expensive. In this present study Acacia nilotica was assessed for its antioxidant activity, and in vivo AChE depression and recovery from OP-AChE inhibition. The mice were exposed in three different OPs including chlorpyrifos 480g/l (CPF), Fenitrothion 10g/l (FNT) and Profenophos 720g/l (PFP). The methanolic bark extract of A. nilotica had a substantial increase of absorbance readings from 2.895±0.0032 to 3.716±0.0259 compared to standard (ascorbic acid) from 0.108±0.0033 to 1.468±0.0297 at P<0.05. AChE depression and recovery were assessed by using the AChE test mate kit to analyze blood collected from the mice’s tail. Recovery effect under crude methanolic extract from A. nilotica, ascorbic acid and normal feeding were compared with the untreated group. Results have shown that there is a significant decrease of AChE level from Day zero to 14th day in all treated groups of CPF, PFP and FNT which indicate poisoning. Significance of AChE recovery observed only in male mice in all treatment groups. This is a first study to assess and report the antioxidant activity of stem bark methanolic extracts of A. nilotica in controlling organophosphate pesticide toxicity in mice, hence further studies on isolation of active compounds are recommended.

Submit your article to IJB Journal

Read moreAluminum Sulfate and Copper Sulfate Impact on Rosa hybrida | InformativeBD

Introduction

Pesticides exposure cause adverse effects on human health (Elibariki & Maguta, 2017). Worldwide, approximately 200,000 cases are due to acute poisoning that leads to deaths each year (UN, 2009). 99% of acute poisoning occurs in developing countries (WHO, 2014). Statistics show that about 700 cases of death related to pesticide poisoning may occur annually (Gupta & Sharma, 2006). This shows the need to prevent people from the adverse effects and death associated with pesticide exposure.

In Tanzania, a recent report shows that the prevalence of occupational acute pesticide poisoning range from 50% to 96% (Lekei et al., 2016). The current treatment of pesticide poisoning cases available in Tanzania’s hospital are an antidote, which includes a drug such as atropine, Pralidoxime (2-pyridine aldoxime methyl chloride) and diazepam which are controlled drugs. The drugs are unavailable in rural settings and are very expensive, (Eddleston, et al., 2008). Alternative drug product from natural plant should be searched and developed in order to protect people who are exposed to pesticide and who are at risk to get pesticide poisoning.

Presence of OP in the human body triggers the production of reactive oxygen species (ROS), which induces Oxidative Stress (OS) such as lipid peroxidation, it also induces neurotoxic action and cause inhibition of Acetylcholinesterase Enzyme (AChE) and a decrease in the antioxidant enzyme (Verma et al., 2007; Oruc, 2012). These antioxidants are essential for neutralizing ROS (Sultana, et al.,2007), meanwhile, AChE is an essential enzyme in neuro-system which play a great role of converting acetylcholine to Acetate and Choline, finally Choline taken back to the neural cell. Acetyl CoA from mitochondria combines with choline to form Acetyl-choline (Ach). Acetate at the ring is released as well as CoA in the neural (Akefe, 2017). Inhibition of AChE results into increase of acetylcholine in the body which cause decrease of AChE level (u/mL) result into acute health effects (headache, dizziness, abdominal pain, death) or chronic health effect (cancer, loss of coordination, loss of vision) (Fayuk & Yakel, 2004). Hence there is a need to prevent the AChE level depression.

Studies have observed that antioxidant derived from vitamins have the capability to fight ROS induced by OPs (Verma, et al., 2007). Also, some studies reported that ROS induced by Chlorpyrifos OP can be scavenged by vitamins enriched antioxidants (A, C and E) (Verma et al., 2007). However, other antioxidant-enriched plants should be searched and assessed their antioxidant property to fight against ROS induced by other OPs. A. nilotica is multi-medicinal plant found in kingdom Plantae, division Mangnoliophyta, Family Fabaceae and is widely found in Africa and Asia (Harmacy & Ciences, 2011). It is reported to have polyphenol antioxidant property (Johns et al., 1999). The medicinal property of the plant may vary depending on part of plant taken. Barks from A. nilotica was shown to contain polyphenol and flavonoids compared with leaves and roots (Sadiq et al., 2015). The presence of polyphenol in A. nilotica gives the plant an ability to scavenge ROS induced by chemicals and protect from oxidative stress in human body (Del et al., 2008): Duganath et al., 2010: Ravikumar & Angelo, 2015). This study was aimed to assess antioxidant activity of A. nilotica in controlling the effects of Chlorpyrifos, Profenophos and Fenitrothion organophosphate pesticides poisoning in mice.

Reference

Aadil KR, Barapatre A, Sahu S, Jha H, Tiwary BN. 2014. Free radical scavenging activity and reducing power of Acacia nilotica wood lignin. International Journal of Biological Macromolecules, 67, 220–227. https://doi.org/10.1016/j.ijbiomac.2014.03.040

kefe IO. 2017. Protective Effects Antioxidants in Chlorpyrifos Toxicity, iMedPub Journals 1–2.

Altuntas I, Delibas N, Doguc DK, Ozmen S, Gultekin F. 2003. Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro, Toxicology in Vitro 17, 153–157. https://doi.org/10.1016/S0887-2333(02)00133-9

Ambali SF, Aliyu MB. 2012. Short-term sensorimotor and cognitive changes induced by acute chlorpyrifos exposure in Wistar, Pharmacologia 3(2), 31-38.

Anjum F, Bukhari S, Shahid M. 2013. Comparative Evaluation of Antioxidant Potential of Parasitic Plant Collected from Different Hosts. Journal of Food Processing and Technology 4(5), 1–6. https://doi.org/10.4172/2157-7110.1000228

Atif Ali. 2012. Acacia nilotica: A plant of  multipurpose medicinal uses. Journal of Medicinal Plants Research 6(9). https://doi.org/10.5897/JMPR11.1275

Chidiebere Uchendu. 2012. The organophosphate, chlorpyrifos, oxidative stress and the role of some antioxidants: A review. African journal of agricultural reseearch. https://doi.org/10.5897/AJAR11.2510

Comfort N, Re DB. 2017. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Current Environmental Health Reports, 4(4), 392–404. https://doi.org/10.1007/s40572-017-0171-y

Del E, Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. 2008. Toxicology in Vitro Anti-free radical activities of kaempferol isolated from Acacia nilotica ( L .) Willd . Toxicology in Vitro, 22(8), 1965–1970. https://doi.org/10.1016/j.tiv.2008.08.007

Duganath N, Kumar SR, Kumanan R, Jayaveera KN. 2010. Evaluation of anti-denaturation property and anti-oxidant activity of traditionally used medicinal plants Natural chemistry, International Journal of Pharma and Bio Sciences, 1(2), 1-7.

Eddleston M, Buckley NA, Eyer P, Dawson A. H. 2008. Management of acute organophosphorus pesticide poisoning. The Lancet, 371(9612), 597–607. https://doi.org/10.1016/S0140-6736(07)61202-1

Elibariki R, Maguta MM. 2017. Status of pesticides pollution in Tanzania – A review. Chemosphere 178, 154–164. https://doi.org/10.1016/j.chemosphere.2017.03.036

Farghaly M. 2008. Toxicological evaluation and bioavailability of on soybeans towards experimental animals C-fenitrothion bound residues, Food and Chemical Toxicology 46, 3111–3115. https://doi.org/10.1016/j.fct.2008.06.015

Fayuk D, Yakel JL. 2004. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons, American Society for Pharmacology and Experimental Therapeutics,23-46. https://doi.org/10.1124/mol.104.000042

Gupta VK, Sharma SK. 2006. Plants as natural antioxidants, Natural Product Radiance 5(4), 326–334.

Harmacy P, Ciences LIFES. 2011. Medicinal attributes of Acacia nilotica Linn. – A comprehensive review on ethnopharmacological claims, International journal of pharmacy & life sciences 2(6), 830–837.

Ismail MA, Koko WS, Osman EE, Dahab MM, Garbi MI, Alsadeg AM, Kabbashi AS. 2016. Molluscicidal Activity of Acacia seyal (Dell) Bark Methanolic Extract Against Biomphalaria pfeifferi Snails. International Biological and Biomedical Journal 2(2), 73–79.

Jindal R, Kaur M. 2014. Acetylcholinesterase inhibition and assessment of its recovery response in some organs of textit{{Ctenopharyngodon} idellus} induced by chlorpyrifos. International Journal of Science, Environment and Technology 3(2), 473–480.

Johns T, Mahunnah RLA, Sanaya P, Chapman L, Ticktin T. 1999. Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Batemi of Ngorongoro District , Tanzania 66, 1–10.

Kalaivani T, Mathew L. 2010. Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. Food and Chemical Toxicology 48(1), 298–305. https://doi.org/10.1016/j.fct.2009.10.013

Kapeleka JA, Lekei EE, Hagali T. 2016. Pesticides Exposure and Biological Monitoring of Ache Activity among Commercial Farm Workers in Tanzania : A Case of Tea Estates. International Journal of Science and Research 5(9), 1708–1713. https://doi.org/10.21275/ART20161938

Lekei EE, Ngowi AV, London L. 2016. Undereporting of acute pesticide poisoning in Tanzania : modelling results from two cross-sectional studies. Environmental Health. https://doi.org/10.1186/s12940-016-0203-3

Maitra SK. 2018. Reproductive Toxicity of Organophosphate Pesticides, Annals of Clinical Toxicology 1(1), 1–8. https://www.researchgate.net/publication/327052798

Malaysiana S, Fraksi K, Tokotrienol K, Oksidatif K, Diaruh H, Union E. 2017. The Effect of Tocotrienol-Rich Fraction on Oxidative Liver Damage Induced by Fenitrothion 46(9), 1603–1609.

Mevlüt S. 2013. Chemosphere Chlorpyrifos-induced changes in oxidant / antioxidant status and haematological parameters of Cyprinus carpio carpio : Ameliorative effect of lycopene, Chemosphere journal of Elsevier Ltd, 90, 2059–2064. https://doi.org/10.1016/j.chemosphere.2012.12.006

Morsy FA. 2003. Protective Effect of Vitamin C and Ginseng on Experimental Liver and Kidney Injuries Induced by Insecticide Profenophos In Male Rats, The Egyptian Journal of Hospital Medicine 10, 34–51.

Ngowi A, Mrema E, Ngowi A, Kishinhi S, Mamuya S. 2017. Pesticide Exposure and Health Problems Among Female Horticulture Workers in Tanzania. Environmental Health Insights 11(0). https://doi.org/10.1177/1178630217715237

Ngowi AV, Maeda DN, Partanen TJ, Sanga MP, Mbise G. 2001. Acute health effects of organophosphorus pesticides on Tanzanian small-scale coffee growers. Journal of Exposure Analysis and Environmental Epidemiology 11, 335–339. https://doi.org/10.1038/sj.jea.7500172

Oruc E. 2012. Oxidative stress responses and recovery patterns in the liver of oreochromis niloticus exposed to chlorpyrifos-Ethyl. Bulletin of Environmental Contamination and Toxicology, 88(5), 678–684. https://doi.org/10.1007/s00128-012-0548-4

Ravikumar S, Angelo RU. 2015. Green Synthesis of Silver Nanoparticles Using Acacia Nilotica Leaf Extract and Its Antibacterial and Anti Oxidant Activity 4(4), 433–444.

Sadiq MB, Hanpithakpong W, Tarning J, Anal AK. 2015. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Industrial Crops and Products 77, 1–8. https://doi.org/10.1016/j.indcrop.2015.09.067

Sancho E, Ferrando MD, Andreu E. 1997. Response and recovery of brain acetylcholinesterase activity in the European Eel, Anguilla anguilla, exposed to fenitrothion. Ecotoxicology and Environmental Safety 38(3), 205–209. https://doi.org/10.1006/eesa.1997.1579

Shahzad B, Shahid A, Anwar F, Manzoor M, Bajwa J. 2006. Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas Y Aceites, 57(3), 328–335. https://doi.org/10.3989/gya.2006.v57.i3.56

Singh J, Singh R, Kumar S. 2012. Comparing of antioxidant and H2O2 induced free radical scavenging activity of Sesbania grandiflora and Acacia nilotica plants. Journal Of Scientific & Innovative Research 1(2), 51–59.

Sultana B, Anwar F, Przybylski R. 2007. Food Chemistry Antioxidant activity of phenolic components present in barks of Azadirachta indica , Terminalia arjuna , Acacia nilotica , Elsevier Ltd Food and Chemistry 104, 1106–1114. https://doi.org/10.1016/j.foodchem.2007.01.019

Taylor P, Farghaly M, Mahdy F, Taha H,  Fathy U. 2007. Behavior of the organophosphorus insecticide fenitrothion in stored faba beans and its biological effects towards experimental animals, Journal of Environmental Science and Health 10, 37–41. https://doi.org/10.1080/03601230701465718

Test-mate ChE Cholinesterase Test System (Model 400) – Instruction Manual. 2003. EQM Research, Inc., (Model 400), 18, Retrieved from http://www.eqmresearch.com/Manual-E.pdf

Unite Nations. General Assembly. Human Rights Council. 2009. General Assembly, 01059(February).

Venkateswara Rao J. 2006. Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology – C Toxicology and Pharmacology 143(4), 492–498. https://doi.org/10.1016/j.cbpc.2006.05.001

Verma RS, Mehta A, Srivastava N. 2007. In vivo chlorpyrifos induced oxidative stress : Attenuation by antioxidant vitamins 88, 191–196. https://doi.org/10.1016/j.pestbp.2006.11.002

WHO. 2014. Regional assessment report on chemicals of public health concern WHO, ISBN: 978-929023281-0.

SourceRecovery of acetyl cholinesterase inhibition by Methanolic Bark Extract of Acacia nilotica from Organophosphate Pesticides Exposure in mice model 

Green Synthesis: Silver Nanoparticles from Moringa oleifera | InformativeBD

Scanning electron microscope analysis of green synthesis silver nanoparticles.

Jayaprakash Kuzhandaivel , Balamurugan Vadivel and Rajasekar Aruliah from the different institute of the india, wrote a research article about Green Synthesis: Silver Nanoparticles from Moringa oleifera, entitled, Antimicrobial and antioxidant properties of silver nanoparticles from Moringa oleifera gum: a green synthesis approach. This research paper published by the  International Journal of Biosciences| IJB an open access scholarly research journal on Bioscience, under the affiliation of the International Network For Natural Sciences | INNSpub, an open access multidisciplinary research journal publisher.

Abstract

Plant gums have enormous medicinal potential and have been used in the pharmaceutical and biomedical fields. In the present investigation, Moringa oleifera gum (MOG) was collected, and its physical properties and phytochemical composition were investigated. Silver nanoparticles (AgNPs) were produced, and characterization was carried out using UV spectroscopic analysis and scanning electron microscopy (SEM). In this study, the standard method was used for the antioxidant assay and the antimicrobial test. The synthesized nanoparticles (NPs) have irregular shapes and no fixed geometry. The agglomerate shape resembles that of pebble-like structures. UV‒vis analysis proved the wavelength of the sample to be 350–470 nm. In antioxidant studies, the synthesized AgNPs exhibited significant DPPH radical scavenging activity values ranging from 21.15 ± 0.017 to 63.46± 0.03 g/mL at concentrations ranging from 100 to 500 g/mL. In an antimicrobial experiment, the maximum incubation zone was 18 mm by 100 µL of AgNPs synthesized from M. oleifera gum extract against S. typhi. P. aeruginosa expressed a 16 mm zone of incubation at 100 µL of AgNPs synthesized from M. oleifera gum. According to the findings of this study, AgNPs derived from M. oleifera gum can be employed as a lead chemical in the creation of an effective antimicrobial drug for the treatment of microbial infections. This research establishes the foundation for synthesizing AgNPs from M. oleifera gum and its powerful novel pharmacological applications.

 Submit your article to IJB Journal

Read more:  Assessing Carbosulfan's Neuro-genotoxic Impact on Carp Fish | InformativeBD

Introduction

Plant gums have tremendous therapeutic importance in pharmaceutical preparations such as tablets, lotions, suspensions, syrups, and ointments. Plant gums are made of polysaccharides that can be used in various formulations and chemical changes to improve their properties [H Zaigham et al., 2019;].Researchers are actively attempting to develop a wide range of novel synthetic and semisynthetic compounds from natural resources that are incredibly beneficial to humans and animals.

The bioactive compounds derived from plant gum can be extracted using current technological advances. Moringa oleifera is a widely distributed plant species used for medicinal purposes. oleifera comes under the Moringaceae family and is fast-growing, droughttolerant, and readily adapted to various habitats and agricultural systems. The plant is native to northeastern India and is commonly found in tropical and subtropical regions [SJS Flora and V Pachauri,2011;]. In the Indian vegetable industry, it holds adistinct and coherent stance. M. oleifera has been used as a food additive because of its high nutritional content and easy digestion of proteins, minerals, vitamins, and carotenoids [JW Fahey,2005; K Maheshwari et al., 2014; J Mehta et al.,2011].

Pharmaceuticals based on metals, polymers, liposomes, and oxide nanoparticles are being researched for their therapeutic potential in many diseases, including cancer [O C Farokhzad et al.,2006;]. Metal nanoparticle synthesis has emerged a san essential branch of nanotechnology, with a growing commercial demand for NPs due to their numerous applications. Researchers have been interested in AgNPs because of their unique properties. In this research, AgNPs have been characterized as antibacterial agents. Silver 'santibacterial action is magnified in the form of NPsdue to the increased number of NPs per unit area(increase in area/surface/volume ratio) [M Araujo etal., 2020;]. In the present investigation, Moringaoleifera gum (MOG) was collected, and its physical properties and phytochemical composition were analyzed. The green production and characterization of AgNPs from M. oleifera gum were then carried out utilizing UV-spectroscopic analysis and SEM. Several studies have reported that M. oleifera plant parts suchas leaves, stems, and seeds have shown suitable antibacterial activities [S Gupta et al., 2018;].However, because there has been no previous research on M. oleifera gum, the current work focuses on the antimicrobial characteristics of AgNPs generated from M. oleifera gum.

Reference

Zaigham H, Tauheed A, Ali A. 2019. Recent trend in traditional medicine dosage form and present status of Unani and Ayurvedic Medicine. International Journal of Pharmaceutical Sciences and Research 10(4), 1640-1649.

Flora SJS, Pachauri V. 2011.Moringa (Moringaoleifera) seed extract and the prevention of oxidative stress. In: Preedy, VR, Watson, RR, Patel, VB. (Eds.), Nuts and Seeds in Health and Disease Prevention. Academic Press, San Diego 92, 775–785.

Fahey JW. 2005. Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1. Trees Life J 1, 15.

Maheshwari K, Yadav RK, Malhotra J, Dhawan NG, Mohan L. 2014. Fascinating Nutritional, Prophylactic, Therapeutic and Socio-Economic Reconcile Attributable to Drum Stick Tree (Moringa oleifera Lam.). Global journal of medical research. Pharma, Drug Discovery, Toxicology & Medicine 14, 11-22.

Mehta J, Shukla A, Bukhariya V, Charde R, 2011. The Magic Remedy of Moringaoliferia: An Overview. International Journal of Biomedical and advance research 2, 215-227.

Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. 2006. Targeted nanoparticle aptamerbioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America 103, 6315–6320.

Araujo M, Moises das Virgens Santana, Antonio do Nascimento Cavalcante, Livio Cesar Cunha Nunes, Luiz Carlos Bertolino, Carla Adriana Rodrigues de Sousa Brito, Humberto Medeiros Barreto, Carla Eiras. 2020. Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications. Materials Science & Engineering C. 115, 110927.

Gupta S, Rohit J, Kachhwaha S, Kothari SL. 2018. Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. Journal of Herbal Medicine 11, 1-11.

Kumar RS, Renuka R. 2019. Isolation and Characterization of Moringa olifera Gum: A Novel Sustained Release Polymer. Journal of Drug Delivery & Therapeutics 9(3), 484-486.

Jarald EE, Sharma Sumati, Sheeja Edwin, Ahmad S, Patni S, Daud A. 2012. Characterization of Moringa oleifera Lam. Gum to establish it as a Pharmaceutical Excipient. Indian Journal of Pharmaceutical Education and Research 46(3).

Harborne JB. 1998. Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. 5th Edition, Chapman and Hall Ltd, London 21, 72.

Kokate CK. 2005. Pharmacognosy” edition thirtieth published by Nirali Prakashan Pune 181, 186.

Shanmugavel G, Prabakaran K, George. 2018. B Evaluation of phytochemical constituents of Moringa oleifera (lam.) Leaves collected from Puducherry region, South India, International Journal of Zoology and Applied Biosciences 3(1).

Chrzczanowicz J, Gawron A, Zwolinska A, de Graft-Johnson J, Krajewski W, Krol M, Markowski J, Kostka T, Nowak D. 2008. Simple method for determining human serum 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity–possible application in clinical studies on dietary antioxidants. Clinical Chemical Laboratory Medicine 46(3), 342-349 p.

Narenkumar J, Parthipan P, Madhavan J, Murugan K, Marpu SB, Suresh AK, Rajasekar A. 2018. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environmental Science and Pollution Research 25(6), 5412-5420 p.

Panda D, Si S, Swain S, Kanungo SK, Gupta R. 2006. Preparation and evaluation of gels from the gum of Moringa oleifera. Indian Journal of Pharmaceutical Sciences 68(6), 777780.

M Dekker. 2002. “Edward MR: Modern Pharmaceutics”. New York. 287, 298.

Nep EI, Conway BR. 2010. Characterization of Grewia gum, a potential pharmaceutical excipient. Journal of Excipients and Food Chemicals 1, 30–40.

Somboonpanyakul P, Wang Q, Cui W, Barbut S, Jantawat P. 2006.Malva nut gum.(Part I): Extraction and physicochemical characterization. Carbohydr. Polym 64, 247–253.

Vinod VTP, Sashidhar RB, Suresh K I, Rao B R, Saradhi UVR, Rao TP. 2008. Morphological, Physico-chemical and structural characterization of gum kondagogu (Cochlospermumgossypium): A tree gum from India. Food Hydrocolloids 22, 899–915.

Nussinovitch A. 2009. Plant gum exudates of the world: sources, distribution, properties, and applications. CRC Press. http://dx.doi.org/10.1201/9781420052244.

Mohammed FAA. 2015. Antioxidants composition of moringa (Moringa oleifera lam) in different plant organs (Doctoral dissertation).

Abdulkarim SM, Long K, Lai OM, Muhammad SKS, Ghazali HM. 2005. Some Physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods, Food Chemistry 93, 253–263.

Aviara NA, Power PP, Abbas T. 2013. Moisture-dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing. Industrial Crops and Products 42, 96–104.

Mohsenin NN. 1986. Physical Properties of Plant and Animal Materials. Taylor and Francis, New York.

Goldstein IJ, Hay GW, Lewis BA, Smith F. 1965. Controlled Degradation of Polysaccharides by Periodate Oxidation, Reduction, and Hydrolysis, in Methods In Carbohydrate Chemistry, ed. R L Whistler, J  N  BeMiller and M  L  Wolfrom, Academic Press, New York. 5, 361–370.

Raja W, Bera K, Ray B. 2016. Polysaccharides from Moringaoleifera gum: structural elements, interaction with β-lactoglobulin and antioxidative activity. RSC Advances 6(79), 75699–75706.

Siddhuraju P, Becker K. 2003.Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleifera Lam.) Leaves, Journal of Agricultural and Food Chemistry 51(8), 2144–2155.

Luqman S, Srivastava S, Kumar R,  Maurya AD,  Chanda D. 2012. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays. Evidence-based complementary and alternative medicine:e CAM, 519084.

Devendra BN, Srinivas N, Prasad VSSL. Talluri Warna Latha PS. 2011. Antimicrobial activity of Moringa oleifera lam., leaf extract, against selected bacterial and fungal strains, International Journal of Pharma and Bio Sciences 2(3), 13-18.

Elgamily H, Moussa A, Elboraey A,  El-Sayed H, Al-Moghazy M, Abdalla A. 2016. Microbiological Assessment of Moringa oleifera Extracts and Its Incorporation in Novel Dental Remedies against Some Oral Pathogens. Open access Macedonian journal of medical sciences 4, 585–590.

Oluduro AO. 2012. Evaluation of Antimicrobial properties and nutritional potentials of Moringa oleifera Lam. leaf in South-Western Nigeria, Malaysian Journal of Microbiology 8(2), 59-67.

SourceAntimicrobial and antioxidant properties of silver nanoparticles from Moringa oleifera gum: agreen synthesis approach