Bioefficacy of Neem and Jatropha Seed Extracts on Diamondback Moth (Plutella xylostella) | InformativeBD

Bioefficacy of Azadirachta indica A. Juss and Jatropha curcas L. seeds aqueous extracts on Plutella xylostella (L.) (Lepidoptera: Plutellidae)

Diabate Dohouonan, Golly Koffi Julien , Ahon Gnamien Marcel , and Tano Yao, from the different institute of the Côte d’Ivoire. wrote a research article about, Bioefficacy of Neem and Jatropha Seed Extracts on Diamondback Moth (Plutella xylostella). Entitled, Bioefficacy of Azadirachta indica A. Juss and Jatropha curcas L. seeds aqueous extracts on Plutella xylostella (L.) (Lepidoptera: Plutellidae). This research paper published by the International Journal of Agronomy and Agricultural Research (IJAAR). an open access scholarly research journal on Agronomy. under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher.

Abstract 

The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is an important pest of cruciferous crops in Côte d’Ivoire. It is a destructive pest of cabbage and it is developed resistance to many conventional insecticides. This study was carried out to evaluate the repellency and antifeedant effects of Azadirachta indica and Jatropha curcas seeds aqueous extracts on Plutella xylostella larvae and compared to two insecticides (Decis12 EC® and Cypercal 50 EC®) used by farmers under laboratory conditions. Three concentrations of Azadirachta indica seed powders (10.3, 25.9 and 41.5g) and of Jatropha curcas seed powders (14.7, 36.9 and 59.1g/L) and one concentration of the insecticides Decis 12EC® (0.042g/L) and Cypercal 50 EC® (0.13g/L) were separately applied on 20 larvae of Plutella xylostella for the antifeedent tests. For the repellent effect tests, 20 larvae of Plutella xylostella were placed on the middle of Whatman paper which half were uniformly applied with each insecticide or biopesticides. Three replicates were performed for each concentration of the treatments. The results showed that the aqueous extracts of Azadirachta indica 25.9 and 41.5g/L and of Jatropha curcas 59.1g/L seeds powders have higher antifeedant and repellency effects on Plutella xylostella larvae than the insecticides Decis 12 EC® and Cypercal 50 EC® in 72 hours. Antifeedant and repellent effects of these botanical extracts were increased with seeds extracts concentrations. Thus, the aqueous extract of Azadirachta indica seed powders 25.9 and 41.5g/L and of Jatropha curcas 59.1g/L can be used to protect efficiency cabbage crops against Plutella xylostella and the environment.

Submit your article to IJAAR Journal

Read moreGenetic Diversity in Freshwater Fish Genus Garra: A Comparative RFLP Analysis | InformativeBD

Introduction

The cabbage-moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is a major pest of cruciferous plants of the genus Brassica in tropical and subtropical area (Seenivasagan and Paul, 2011; Diabaté et al., 2014). These insect pests are responsible for abundant crop losses and have reduced nutritional and low market values of cabbage (Cartea et al., 2009; Kirsch and Schmutterer, 2009). The larvae feed on the foliage of cruciferous plants and it cause an estimate 90% loss of production despite pesticides application (Cartea et al., 2009; Kirsch and Schmutterer, 2009; Diabaté et al., 2020).

In Côte d’Ivoire, farmers use chemical insecticides for the control of P. xylostella. Indeed, recommended application rates are not respected and only 27% of pesticides used by farmers are registered (Doumbia and Kwadjo, 2009). This intensive use of chemical pesticides has led to the development of resistance of P. xylostella to a wide range of insecticides (Zhao et al., 2006; Sayyed and Wright, 2006; Pu et al., 2010). However, that are hampered by many attendant problems such as toxicity to humans that consume the product, development of P. xylostella resistant strains to pesticides and the cost of procurement (Kirsch and Schmutterer, 2009; Nehare et al., 2010; Shen et al., 2010).

P. xylostella larvae develop physiological, biochemical, or anatomical mechanisms that allow them to reduce the effects of products applied to crops (Dugravot 2004; Zhao et al., 2006; Agboyi et al., 2016; Xue, 2018). These chemical pesticides used by farmers are persistent and accumulate in water, soil, air and in food (Baglieri et al., 2011; Horváth et al., 2013). Traoré et al. (2008) showed that the presence of the pesticide organochlorine in fish and in cow's milk in several regions of Côte d’Ivoire where cabbage cultivation where established. In addition, severe damage is caused to the natural enemies of this pest by the chemical insecticides (Shi et al., 2004). Their toxic effects reduce the activity of essential fauna for soil fertility (Baglieri et al., 2011; Horváth et al., 2013). Thus, the control of P. xylostella constitutes an ecological, environmental and health threat. The use of more natural methods that can offer compatible control efficiency plus the benefit to the environment is most favoured. The objective of this work was to evaluate the repellency and antifeedant effects of aqueous extracts of Jatropha and neem grain powders on P. xylostella larvae (L2) per contact in view of their large scale applicability.

Reference 

Agboyi LK, Ketoh GK, Martin T. 2016. Résistance aux pesticides dans les populations de Plutella xylostella (Lepidoptera: Plutellidae) du Togo et du Bénin. International Journal of Tropical Insect Science 36, 204-210.

Alzouma I. 1990. Les problèmes de la post-récolte en Afrique sahélienne. In: Foua Bi K. and Philogene J. (Eds.), Actes de séminaire International de la post-récolte en Afrique, Abidjan, Côte d’Ivoire p. 22-27.

Baglieri A, Gennari M, Arena M, Abbate C. 2011. The adsorption and degradation of chlorpyriphos-methyl, pendimetalin and metalaxyl in solid urban waste compost. Journal of Environmental Sciences Health Part B 46, 454-460.

Boateng BA, Kusi F. 2008. Toxicity of jatropha seed oil to Callosobruchus maculatus (Coleoptera: Bruchidae) and its parsitoid, Dinarmus basailis (Hymenoptera: Pteromalidae). Journal of Applied Sciences Research 4, 945-951.

Bouchelta A, Boughdad A, Blenzar A. 2005. Effets biocides des alcaloïdes, des saponines et des flavonoïdes extraits de Capsicum frutescens L. (Solanaceae) sur Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Biotechnology Agronomy Society and Environment 9(4), 259- 269.

Cartea ME, Padilla G, Vilar M, Velasc P. 2009. Incidence of the major Brassica pests in northwestern Spain. Journal of Economic Entomology 102, 767-773.

Cui J, Li ML, Yuan MS. 2013. Semisynthesis of N-acyl homoserinelactone derivatives and the antifeedant activity against Mythimna separate. Journal of Environmental Sciences Health Part B 48, 671- 676.

Devappa RK, Makkar HPS, Becker RK. 2010. Jatropha toxicity- A Review. Journal of Toxicolology and Environmental Health Part B 13(6), 476-507.

Diabaté D, Kadio EAAB, Tano Y. 2020. Toxicité des extraits aqueux de Azadirachta indica a. Juss et de Jatropha curcas L. sur Plutella xylostella (L.) (Lepidoptera: Plutellidae) par contact. Agronomie Africaine 32(4), 489-498.

Diabaté D, Tano Y. 2014. Biopesticide Efficacy of Aqueous Extracts of Jatropha curcas L. and Azadirachta indica (A. Juss) on Plutella xylostella (Lepidoptera: Plutellidae) on field in Côte d’Ivoire. Journal of Applied Environmental and Biological Sciences 4(9), 183-190.

Doumbia M, Kwadjo KE. 2009. Pratiques d’utilisation et de gestion des pesticides par les maraîchers en Côte d’Ivoire: Cas de la ville d’Abidjan et deux de ses banlieues (Dabou et Anyama). Journal of Applied Biosciences 18, 992-1002.

Dugravot S. 2004. Les composés secondaires soufrés des Allium: rôle dans les systèmes de défense du poireau et actions sur la biologie des insectes. Thèse de Doctorat, France p. 41-61.

Horváth Z, Ambrus Á, Mészáros L, Braun S. 2013. Characterization of distribution of pesticide residues in crop units. Journal of Environmental Sciences Health Part B 48, 615-625.

Isman MB. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Reviews of entomology 51, 45-66.

Kirsch K, Schmutterer H. 2009. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in Controlling the diamondback moth, Plutella xylostella (L.), in the Philippines. Journal of Applied Entomology 105, 249-255.

McDonald LL, Guy RH, Speirs RD. 1970. Preliminary evaluation of news candidates materials as toxicants, repellents and attractants against stored product insects. Marketing Res. Rep. n˚ 882. Wanshington: Agricultural Research Service, US/ Dept of Agric 183 p.

Ndomo AF, Tapondjou AL, Tendonkeng F, Tchouanguep FM. 2009. Evaluation des propriétés insecticides des feuilles de Callistemon viminalis (Myrtaceae) contre les adultes d’Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Tropicultura 27(3), 137-143.

Nehare S, Ghodki BS, Lande GK, Pawade V, Thakare AS. 2010. Inheritance of resistance and cross resistance pattern in indoxacarb-resistant diamondback moth Plutella xylostella L. Entomological Research 40, 18-25.

Nesseim TDT, Fillet M, Mergeai G, Dieng A, Jean-Hornick L. 2012. Principes toxiques, toxicité et technologie de détoxification de la graine de Jatropha curcas L. (synthèse bibliographique). Biotechnology Agronomy Society and Environment 164, 531-269.

Pu X, Yang YH, Wu SW, Wu YD. 2010. Characterization of abamectin resistance in a field-evolved multi-resistant population of Plutella xylostella. Pest Management Science 66, 371-378.

Sayyed AH, Wright DJ. 2006. Genetics and evidence for an esterase associated mechanism of resistance to Indoxacarb in field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science 62, 1045-1051.

Seenivasagan T, Paul NAV. 2011. Electroantennogram and flight orientation reponse of Costesia plutallae to hexane extract of cruciferous host plants and larvae of Plutella xylostella. Entomological Research 41, 7-17.

Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiology 4, 35-39.

Shen J, Li Z, Li D, Wang R, Zhang S, You H. 2020. Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella. Insects 11, 311-320.

Shi ZH, Guo SJ, Lin WC, Liu SS. 2004. Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Pest Management Science 60, 1213-1219.

Traoré SK, Dembele A, Mamadou K, Mambo V, Lafrance P, Bekro YA. 2008. Contrôle des pesticides organochlorés dans le lait et produits laitiers: Bioaccumulation et risques d’exposition Afrique Science 4(1), 87-98.

Treboux M. 2013. Revue bibliographique sur le tourteau de Jatropha: Caractéristiques et valorisation envisageable 16 p.

Xue CB. 2018. Resistance to Diamide insecticides in Plutella xylostella (Lepidoptera: Plutellidae: comparison between lab-selected strains and field-collected populations. Journal of Economic Entomology 111(2), 853-859.

Zhao JZ, Collins HL, Li YX, Mau RF, Thompson GD, Hertlein M. 2006. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb and emamectin-benzoate. Journal of Economic Entomology 99, 176-181.

Source : Bioefficacy of Azadirachta indica A. Juss and Jatropha curcas L. seeds aqueous extracts on Plutella xylostella (L.) (Lepidoptera: Plutellidae)

  

0 comments: