Paulo César Ferreira
Linhares, Paloma de Almeida Oliveira, Maria Francisca Soares Pereira, Janilson
Pinheiro de Assis, Roberto Pequeno de Sousa, Lunara de Sousa Alves, Joaquim
Odilon Pereira, Maria Elisa da Costa Souza, Domingos Severino de Souza Junior, Walter
Rodrigues Martins, Eudes de Almeida Cardoso, and Jovynttino Francisco de
Araújo Santana
Abstract
Arugula is a
nutritionally rich vegetable. Considered a functional food, it can be used to
treat diseases and improve clinical conditions. This work was conducted at the Rafael
Fernandes Experimental Farm, in the Alagoinha district, rural area of
Mossoró-RN, from December 2016 to February 2017, with the objective of
evaluating the agronomic viability of arugula, functional vegetable under the
residual effect of species of the semi-arid region. The experimental design was
the complete randomized blocks with treatments arranged in a 5 x 3 factorial
scheme, with three replications. The first factor was constituted by four green
fertilizer (0.0, 0.8, 1.6, 2.4, 3.2kg m-2 dry basis) and second factor by
the types of green fertilizers (Merremia aegyptia, Calotropis procera and Senna
uniflora). Initially radish was planted in plots of 1.4 x 1.4m. After the crop
was withdrawn, the arugula cultivated Cultivada was planted. The evaluated
characteristics were: height and number of leaves per plant, yield; number of
sauces and dry matter mass of the aerial part. The best agronomic performance
of the arugula was observed in the amount of 2.4kg m-2, with yield of 902.3g m-2 and
30 arugula sauces. Among the types of fertilizers, Merremia aegyptia presented
statistical superiority in relation to Calotropis procera and Senna
uniflora for yield and number of sauces. The incentive for the cultivation
of arugula is important because its benefits are directly related to the
farmers who produce and also commercialize, and the consumers who acquire this
vegetable.
Read more : Cacao Phytophthora Pod Rot: Symptoms & Pathogenicity | InformativeBD
Introduction
The production of vegetables is in a fairly intense activity in northeastern Brazil region due to the cycle of crops, ranging from 25 to 35 days. Another factor that contributes to this activity is the demand for these olerícolas products, where the producers realize plantations that meet the needs of the market (Linhares, 2009).
Among the olericolas, one finds Arugula (Eruca sativa) also known as Persian Mustard, is a Brassicaceae whose leaves are much appreciated in the form of salad, being produced in all regions of Brazil. It is estimated that the cultivated area is 6.000ha/ano (Sala et al., 2004; Purqueiro et al., 2007). Although it develops better under mild temperatures, arugula has been cultivated throughout the year in many regions (Filgueira, 2008).
In the northeastern region of Brazil, there is a large consumption of arugula due to its use in cooking in various recipes, such in pizza, in meat, which has contributed to the increase of the production area. The cultivation is mainly by family farmers in an organic production system, using manure as the main source of input. Thus, the dependence of this input makes the producer vulnerable to scarcity, since you do not always own on your property, increasing the cost of production (Linhares et al., 2014).
In this context, organic fertilization, using spontaneous species from the caatinga biome, contributed as a with resource availability, besides reducing production costs (Linhares, 2013). Spontaneous species of the caatinga occurring in the rainy season, hairy woodrose (Merremia aegyptia L.) and kill pasture (Senna uniflora) and throughout the year, rooster tree (Calotropis procera), has been used as organic fertilizer in the production of vegetables , contributing to the increase in productivity (Linhares, 2009).
Linhares (2013) states that spontaneous species can promote the same benefits as introduced species in cycling and nutrient availability. In this sense, some studies have evidenced the use of spontaneous species of caatinga as organic fertilizer (Linhares et al., 2009a; 2009b; Linhares et al., 2010; Linhares et al., 2011; Linhares et al., 2012; Linhares et al., 2018; Bezerra Neto et al., 2011; Góes et al., 2011; Linhares et a., 2021 and Linhares et al., 2022).
Neves et al. (2018) evaluated the production of leafy vegetables, lettuce, found efficiency in the application of mung bean in the presence of bovine manure in agronomic performance, with productivity of 1.5kg m- 2 in the amount of 2.0kg m-2.
In this sense, an important aspect to be considered when studying the organic production of vegetables, having as source of fertilizer, species of the caatinga biome, is the contribution that residues left in the soil in successive cultivation can promote in the subsequent productivity, since the fertilization of the soil in an activity as intense, as the olericultura, would increase the cost of production whenever a new crop was implanted. Therefore, with the objective of evaluating the agronomic viability of arugula, functional vegetable under the residual effect of species of the semiarid region.
Reference
Empresa Brasileira de
Pesquisa Agropecuária -EMBRAPA. 2006. Sistema brasileiro de classificação
de solos. 2.ed. Rio de Janeiro: Embrapa p. 306.
Bezerra Neto F, Góes
SB, Sá JR, Linhares PCF, Góes GB, Moreira JN. 2011. Desempenho agronômico
da alface em diferentes quantidades e tempos de decomposição de jitirana verde.
Revista Brasileira de Ciências Agrárias 6(1), 236-242.
Filgueira FAR. 2008.
Novo manual de olericultura: agrotecnologia moderna na produção e
comercialização de hortaliças. Viçosa: UFV 421p.
Góes SB, Bezerra Neto
F, Góes GB, Moreira JN. 2011. Productive performance of lettuce at
different amounts and times of decomposition of dry scarlet starglory. Revista
Ciência Agronômica 42(1), 1036-1042.
Hardes WC, Heredia
Zárate NA, Vieira MC. 2005. Produção e renda bruta de rúcula (Eruca sativa Mill.)
Cultivada e de almeirão (Cichorium intybus L.) Amarelo, em cultivo solteiro
e consorciado. Ciência e Agrotecnologia 29(2), 775-785.
Kottek M, Grieser J,
Rudolf B, Rubel F. 2006. Mapa mundial da classificação climática de
Köppen-Geiger atualizada. Meteorologische Zeitschrift 15(2), 259-263.
Jandel Scientific. 1991.
Table Curve: Curve Fitting Software: Jandel Scientific 280 p.
Kronka SN, Banzato DA. 1995.
(Estat) system for statistical analysis 2. 3. ed. Jaboticabal: Funep 243 p.
Linhares PCF, Maracajá
PB, Liberalino Filho J, Assis JP, Sousa RP, Medeiros AC. 2021. Jitirana (Merremia
aegyptia L. Urban) [livro eletrônico]: Potencialidade de uso como espécie
espontânea do semiárido na adubação verde de hortaliças. In: Linhares PCF,
Cunha LMM, Silva NV, Neves AM, Medeiros BBM and Paiva AC. Fitomassa verde e
seca, teores e acúmulo de macronutrientes da jitirana (Merremia aegyptia L.
Urban) em diferentes estádios fenológicos- Nova Xavantina, MT: Ed. Pantanal.
96p Cap. 2, p.24-45.
Linhares PCF, Assis JP,
Sousa RP, Sá JR, Pereira MFS, Ramalho WB, Silva RIG, Silva RA, Pereira KLV. 2018.
Optimized amount of hairy woodrose (Merremia aegyptia L.) in the
productivity of coriander cultivars. Bulgarian Journal of Agricultural
Science 24(2), 654-659.
Linhares PCF, Maracajá
PB, Pereira MFS, Assis JP, Sousa RP. 2014. Roostertree (Calotropis procera)
under different amounts and periods of incorporation on yield of coriander.
Revista Verde de Agroecologia e Desenvolvimento Sustentável 9(2), 07-12.
Linhares PCF. 2013.
Green manure as soil conditioner. Revista Campo e negócios 127(1), 22-23.
Linhares PCF, Pereira
MFS, Assis JP, Bezerra AKH. 2012. Quantidades e tempos de decomposição da
jitirana no desempenho agronômico do coentro. Ciência Rural 42(2), 243-248.
Linhares
PCF, Pereira MFS, Almeida SMS, Paz AES, Paiva ACC. 2011. Efeito
residual do mata-pasto (Senna uniflora) no desempenho produtivo do rabanete.
Revista Verde de Agroecologia e Desenvolvimento Sustentável 6(2), 168-173.
Linhares PCF, Oliveira
RM, Pereira MFS, Silva ML, Fernandes PLO. 2010. Adubação verde em
diferentes proporções de jitirana com mata-pasto incorporado ao solo no
coentro. Revista Verde de Agroecologia e Desenvolvimento Sustentável 5(3), 91-95.
Linhares PCF. 2009.
Vegetação espontânea como adubo verde no desempenho agroeconômico de hortaliças
folhosas. 109 f. Tese (Doutorado em Fitotecnia: Área de Concentração em
Agricultura Tropical)- Universidade Federal Rural do Semi-Árido, Mossoró,
Brazil.
Linhares PCF, Silva ML,
Borgonha W, Maracajá PB, Madalena JAS. 2009. Velocidade de decomposição da
flor-de-seda no desempenho agronômico da rúcula cv. cultivada. Revista Verde de
Agroecologia e Desenvolvimento Sustentável 4(2), 46-50.
Neves APM, Linhares
PCF, Souza RP, Assis JS, Neves AM, Cunha LMM, Almeida AMB, Pereira MFS, Alves
LS. 2018. Successive crops of lettuce fertilized with bovine manure in the
presence and absence of mung bean. International Journal of Development
Research 08(1), 19754-19760.
Purqueiro LFV, Demant
LAR, Goto R, Boas RLV. 2007. Efeito da adubação nitrogenada de cobertura e
do espaçamento sobre a produção de rúcula. Horticultura Brasileira 25(2), 464-470.
Rêgo LGS, Martinscm,
Silva EF, Silva JJA, Lima RNS. 2016. Pedogenesis and classification of
soils of an experimental farm in Mossoró, Rio Grande do Norte, Brazil) Revista
Caatinga 29(1), 1036-1042.
Sala FC, Rossi F, Fabri
EG, Rondino E, Minami K, Costa CP. Caracterização varietal de rúcula. In:
Congresso Brasileiro de Olericultura, 44., 2004, Brasília. Resumos… Brasília:
Associação Brasileira de Olericultura, 22, n. 2, jul. 2004. Suplemento.
Solino AJS, Ferreira
RO, Ferreira RLF, Araújo Neto SE, Negreiro JRS. 2010. Cultivo orgânico de
rúcula em plantio direto sob diferentes tipos de coberturas e doses de
composto. Revista Caatinga 23(2), 18-24.
Taiz L, Zeiger E. 2017.
Plant Physiology, 3. ed. Porto Alegre: Artmed 954 p.
Zárate NAH, Vieira MC,
Graciano JD, Gassi RP, Ono FB, Amadori AH. 2006. Produção de cebolinha,
solteira e consorciada com rúcula, com e sem cobertura do solo com
cama-de-frango. Ciências Agrárias 27(2), 504-514.
0 comments:
Post a Comment