Fungal Isolates: Inhibitory Indices Against Mycotoxins | InformativeBD

In-vitro Inhibitory Indices of Selected Fungal Isolates against Mycotoxin Fungi

Mwatabu M. Edward, Were J. Omondi , Chiveu J. Chemulanga and Ochieng E. Ouma from the different institute of the Kenya, wrote a research article about Fungal Isolates: Inhibitory Indices Against Mycotoxins, about, In-vitro Inhibitory Indices of Selected Fungal Isolates against Mycotoxin Fungi. This research paper published by the International Journal of Mycrobiology and Mycology | IJMM.an open access scholarly research journal on Mycrobiology  under the affiliation of the International Network For Natural Sciences | INNSpub. an open access multidisciplinary research journal publisher.

Abstract

Limited fungal-based biocontrol products are available for use against mycotoxins in food and feed industry in Kenya. In filling this gap, in-vitro inhibitory assessment of six mycotoxin and nine non-mycotoxin species isolated from Western Kenya were placed on growth media using dual and modified plating techniques to determine the percentage inhibitions, capacity to form inhibition zones and degree of general antagonism on growth of mycotoxin fungi. The cultures were incubated at 25-27oC under 12-hour dark and 12-hour light conditions aseptically. Observations were made 10 days after incubation. Fungal isolates tested for their antagonistic effect on mycotoxin fungi were MCMT4b, MCMT3, MCHB2, T. harzianum, Monascus species, Biatrospora species, P. endophytica, C. olivaceum, and Epichloe species. Mycotoxin fungi tested were A. flavus, A. parasiticus, A. nomius, P. corrylophillum, P. auratiogriseum and A. niger. More than 80% growth inhibitory indices against mycotoxin fungi were expressed by T. harzianum, MCMT3, MCMT4b and Monascus species. Also, MCMT3, MCMT4b and Monascus species formed the largest inhibition zones against mycotoxin fungi. Fungal isolates MCMT3, MCMT4b, Monascus species and T. harzianum have growth suppression effect against A. flavus, A. parasiticus, A. niger, P. corrylophillum, and P. auratiogriseum in-vitro. More elaborate identification of the unidentified fungi, genetic characterization and field efficacy assessments of these isolates is recommended. 

Submit your article to IJMM Journal

 Read moreCacao-Infused Tinupig: Crafting & Packaging Innovation | InformativeBD

Introduction

Food and feed safety is a global challenge due to mycotoxin contamination in warm regions across the globe (Eshelli et al., 2018; Truong et al., 2022). It is a significant challenge to sustain quality food and feed production, especially in most areas of sub-Saharan Africa (Nleya et al., 2018). However, it is nearing a catastrophic level in Kenya, with the country now ranking high in terms of severity and frequency of mycotoxin poisoning, often with human fatality (Kimanya, 2015; Tan, 2020). Mycotoxins are of high importance because they contribute to grain nutritional and quality losses of up to I billion metric tons on world's agricultural produce yearly (Ayofemi Olalekan Adeyeye, 2020). For example, exposure of humans to aflatoxins at even at low levels can cause cancer and several other health complications, but death is often the result of high and acute level exposure (Awuchi et al., 2020; Muthomi, 2018). The mycotoxin problem cuts across the agricultural value chain, affecting farmers, traders, markets, and consumers (animals and humans) (Danso et al., 2018). 

For sustainable management of these toxins around the world, very few approved biological control products are available to manage mycotoxins in grains at preharvest globally. For instance, in 2015, the first fungal biocontrol product, AflaSafe KE01TM, was developed for use in Kenya (Migwi et al., 2020). However, prior to efficacy testing of potential bio-control agents against mycotoxin-producing fungi, testing the target and non-target effect of fungal interactions between the toxin producers (toxigenic) and nonproducers (atoxigenic) is necessary (Degola et al., 2021; Mylroie et al., 2016). 

For effective development of efficacious biocontrol agent, the abundance and distribution of fungi by their geographical location in three major crop-producing regions of Kenya were classified (Salano, 2015). However, since the aflatoxin problem is still persistent in Kenya, it is For effective development of efficacious biocontrol agent, the abundance and distribution of fungi by their geographical location in three major crop-producing regions of Kenya were classified (Salano, 2015). However, since the aflatoxin problem is still persistent in Kenya, it is essential to identify additional efficacious biocontrol agents (fungi) with broad spectrum activity against a wide range of mycotoxin fungi. Therefore, this study aimed at determining the in-vitro inhibitory capacities of selected fungal species against mycotoxin-producing fungal isolates obtained from Western Kenya.

Reference

Abdallah MF, Ameye M, De Saeger S, Audenaert K, Haesaert G. 2018. Biological control of mycotoxigenic fungi and their toxins: An update for the pre-harvest approach. In Mycotoxins-impact and management strategies 1-31. https://doi.org/10.5772 /intechopen. 76342

Agboyibor C, Kong WB, Chen D, Zhang AM, Niu SQ. 2018. Monascus pigments production, composition, bioactivity and its application: A review. Biocatalysis and Agricultural Biotechnology 16, 433-447. https://doi.org/ 10.1016/ j.bcab.2018.09.012

Awuchi CG, Amagwula IO, Priya P, Kumar R, Yezdani U, Khan MG. 2020. Aflatoxins in foods and feeds: A review on health implications, detection, and control. Bull. Environ. Pharmacol. Life Sci 9, 149-155. http://www.bepls.com

Ayofemi Olalekan Adeyeye S. 2020. Aflatoxigenic fungi and mycotoxins in food: a review. Critical reviews in food science and nutrition 60, 709-721. https://doi.org/10.1080 /10408398.2018.1548429

Bandyopadhyay R, Ortega-Beltran A, Akande A, Mutegi C, Atehnkeng J, Kaptoge L. 2016. Biological Control of Aflatoxins in Africa: Current Status and Potential Challenges in the Face of Climate Change. World Mycotoxins Journal 9, 771-789. https://doi.org/10.3920/WMJ2016.2130

Bentil JA, Thygesen A, Mensah M, Lange L, Meyer AS. 2018. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Applied microbiology and biotechnology 102, 5827-5839. https://doi.org/ 10.1007 /s00253-018-9072-8

Danso JK, Osekre EA, Opit GP, Manu N, Armstrong P, Arthur FH, McNeill SG. 2018. Post-harvest insect infestation and mycotoxin levels in maize markets in the Middle Belt of Ghana. Journal of Stored Products Research 77, 9-15. https://doi.org/10.1016/j.jspr.2018.02.004

Degola F, Spadola G, Forgia M, Turina M, Dramis L, Chitarra W, Nerva L. 2021. Aspergillus goes viral: ecological insights from the geographical distribution of the mycovirome within an Aspergillus flavus population and its possible correlation with aflatoxin biosynthesis. Journal of Fungi 7, 833.

Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS. 2019. Preliminary classification of Leotiomycetes. Mycosphere 10, 310–489. https://doi.org/ 10.5943 /mycosphere/10/1/7

Eshelli M, Qader MM, Jambi EJ, Hursthouse AS, Rateb ME. 2018. Current status and future opportunities of omics tools in mycotoxin research. Toxins 10, 433. https://doi.org /10.3390 /toxins10110433

Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control 117, 147-157. https://doi.org/10.1016/ j.biocontrol.2017.11.006

Horta MAC, Murad NF, de Oliveira Santos E, dos Santos CA, Mendes JS, Brandão MM, de Souza AP. 2018. Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species. Scientific Reports 8, 1-11.https://doi.org/10.1038/s41598-018-19671-w

Kagot V, De Boevre M, Landschoot S, Obiero G, Okoth S, De Saeger S. 2022. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households. International Journal of Food Microbiology 363, 109502. https://doi.org/ 10.1016/j.ijfoodmicro.2021.109502

Kim C, Jung H, Kim YO, Shin CS. 2006. Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS microbiology letters 264, 117-124. https://doi.org/10.1111/j.1574-6968.2006.00451.x

Kucuk C, Kyvanc M. 2011. In-vitro Interactions and Fungal Populations Isolated from Maize Rhizosphere. Journal of Biological Sciences 11, 492-495. https://www.jstage.jst.go.jp/article /bio/25/2/25_113/_article/-char/ja/

Kumar R, Kundu A, Dutta A, Saha S, Das A. 2020. Profiling of volatile secondary metabolites of Chaetomium globosum for potential antifungal activity against soil borne fungi. Journal of Pharmacognosy and Phytochemistry 9, 922-927.

Lass‐Flörl C, Perkhofer S, Mayr A. 2010. In vitro susceptibility testing in fungi: a global perspective on a variety of methods. Mycoses 53, 1-11. https://doi.org/10.1111/j.1439-0507.2009.

Liu L, Zhao J, Huang Y, Xin Q, Wang Z. 2018. Diversifying of chemical structure of native Monascus pigments. Frontiers in Microbiology 9, 3143.https://www.frontiersin.org/articles/10.3389 /fmicb.2018.03143/full

Maurya KM, Singh R, Tomer A. 2014. In Vitro Evaluation of Antagonistic Activity of Pseudomonas fluorescens Against Fungal Pathogen. Journal of Biopesticides 7, 43-46. http://www.jbiopest.com/users/LW8/efiles/vol_7_1_43-46.pdf

Maurya S. 2020. Biological control a sustainable approach for plant diseases management: A review. Journal of Pharmacognosy and Phytochemistry 9, 1514-1523. https://www. phytojournal.com/archives/2020/vol9issue2/PartY/9-2-84-468.pdf

Migwi B, Mutegi C, Mburu J, Wagacha J, Cotty P, Bandyopadhyay R, Manyong VM. 2020. Assessment of willingness-to-pay for Aflasafe KE01, a native biological control product for aflatoxin management in Kenya. Food Additives & Contaminants: Part A 37, 1951-1962. https://doi.org/10.1080/19440049.2020.181757

Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. 2020. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic acids research 48, 546-552. https://doi.org/10.1093/nar/gkaa374

Muthomi J. 2018. Aflatoxin Research in Kenya. University of Nairobi, Parklands, Nairobi. https://documents.pub/document/pdfaflatoxin-research-in-kenya-department-of-plant-james-w-muthomi-department.html?page=1

Mylroie JE, Ozkan S, Shivaji R, Windham GL, Alpe MN, Williams WP. 2016. Identification and quantification of a toxigenic and non-toxigenic aspergillus flavus strain in contaminated maize using quantitative real-time pcr. Toxins 8, 15. https://doi.org/10.3390/toxins8010015

Nleya N, Adetunji MC, Mwanza M. 2018. Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins 10, 89. https://doi.org/10.3390/toxins10050089

Rahman MA, Begum MF, Alam MF. 2009. Screening of Trichoderma Isolates as a Biological Control Agent against Ceratocystis paradoxa Causing Pineapple Disease of Sugarcane. Microbiology 37, 277-285. https://doi.org/ 10.4489/myco. 2009.37.4.277

Salano NE. 2015. Characterization of aflatoxins and toxigenic aspergillus in maize and soil from the eastern region of Kenya. Doctoral Dissertation, Egerton University, Kenya. https:// www.researchsquare.com/article/rs-9585/ latest.

Schoch LC, Lopez-Giralrdez F, Sung G, Townsend PJ. 2009. The Ascomycota Tree of Life: A Phylum-wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Systematic Biology 58, 224-239. https://academic.oup.com /sysbio/article-abstract/58/2/224/1671572

Shenouda ML, Cox RJ. 2021. Molecular methods unravel the biosynthetic potential of Trichoderma species. RSC advances 11, 3622-3635. https://doi.org/10.1039/D0RA09627J

Tan K. 2020. Aflatoxin and Its Toxic Tragedies in Kenya. Journal of Young Investigators 38, 10-12. https://www.jyi.org/2020-august/2020/8/1/ aflatoxin-and-its-toxic-tragedies-in-kenya

Truong NN, Tesfamariam K, Visintin L, Goessens T, De Saeger S, Lachat C, De Boevre M. 2022. Associating multiple mycotoxin exposure and health outcomes: current statistical approaches and challenges. World Mycotoxin Journal 1-8. https://doi.org/10.3920/ WMJ2022.

Van Der Werf W, Bianchi F. 2022. Options for diversifying agricultural systems to reduce pesticide use: Can we learn from nature? Outlook on Agriculture 51, 105-113. https://doi.org/ 10.1177%2F00307270221077442

Wild C, Miller JD, Groopman JD. 2016. Mycotoxin Control in Low-and Middle-income Countries. World Health Organization, Geneva, Switzerland. https://pubmed.ncbi.nlm.nih.gov

Yadav AN, Kour D, Kaur T, Devi R, Yadav N. 2020. Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. Agriculturally Important Fungi for Sustainable Agriculture: Functional Annotation for Crop Protection 2, 347-356. https://link.springer.com/chapter/10.1007 /978-3-030-48474-3_12

 Source In-vitro Inhibitory Indices of Selected Fungal Isolates against Mycotoxin Fungi


0 comments: